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AFIT/GAE/ENY/94M-3
Abstra

One of the conclusions from the STOL/MTD program was the need for a

multivariable method of designing controllers of low order. This research

investigated that problem by studying reduced order mixed H / H- control

theory applied to the STOL Landing configuration which employs both thrust

vectoring and the use of a canard. Model matching techniques were used to

obtain responses that met handling qualities criteria and reduced pilot

workload by decoupling pitch rate and velocity commands. The time responses

were found through nonlinear simulation and showed that the full order designs

did match the ideal models very well and had good noise and wind rejection.

Singular value analysis showed that the commands were decoupled very well.

The reduced order method was mixed H2 / H_ optimization. A fourth order

controller that had good performance was found by using a performance

constraint, and a fourth order controller that provided good margins was found

using a robustness constraint. A third order controller was also found with a

performance constraint. Recommendations for finding a low order controller,

with good performance and robustness are given.
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DIRECT REDUCED ORDER MIXED H2 / H_ CONTROL FOR THE SHORT
TAKE-OFF AND LANDING / MANEUVER TECHNOLOGY

DEMONSTRATOR (STOL/MTD)

Chapter 1. Introduction

1.1 Background

Over the past several years, great steps have been taken in the area of

multivariable control. The designer of today has methods like H2, H_, 4-

synthesis, and others to deal with multivariable problems. Besides being able

to handle multivariable problems, these methods also offer benefits such as

robust stability and performance. There are, however, drawbacks to using

these methods. One of the biggest is the fact that the controllers these

methods produce are of order greater than or equal to the design model. When

one considers a complicated problem with dynamic weightings, the controllers

are of such a high order that actually applying them is not practical or

possible. As a result, there has been a great deal of work on finding ways of

producing low or reduced order multivariable controllers. Some progress has

been made. This work is very important since one could have the best theory

in the world but it would not do much good if it could not be applied in a real

application. This applicability should be a long term goal of any engineering

research. This, and conclusions from the STOL and Maneuver Technology

Demonstrator (SMTD), which will be discussed further in the next section, are

the motivation behind this thesis. The goal of this thesis is to apply reduced

order mixed H2/H. theory to the SMTD and to analyze the results with

respect to both robustness and handling qualities.



1.2 STOL and Maneuver Technolky Demonstrator

The SMTD program was a Wright Laboratory development that was

structured to:

... develop and validate through analysis, experiment and flight
test, specific technologies intended to provide current and future
high-performance fighters with both STOL capability and
enhanced combat mission performance.[1:1]

This program used a modified F-15B. Some of these modifications are

shown in Figure 1.1.
Fully

Integrated F Instrumented
Propulsion conWro- 2Nst zlenTe T

*Contsrurs 2D CID TV/TR
A*jl Nozzles

*safomm

F-15E

APG 70
Radar--

STOL Landing Gear FUR Pod

Figure 1.1. SMTD Aircraft Modifications

The main modifications that are important to this research involve the

canards, Integrated Flight/Propulsion Control (IFPC) , and the thrust

vectoring. Just as the name suggests, the IFPC's purpose is to integrate the

aerodynamic control surfaces as well as the engine thrust and vectoring to

achieve the required performance which includes good stability and "positive

manual control (2:473]".

The handling qualities criteria for the program were obtained from MIL-

F-8785C. Throughout the program, however, manned flight simulation showed

deviations from this guideline which were incorporated into MIL-F-1797, which

2



replaced the previous document. More specific information can be found in [1],

(21, [3], and (5].

The flight control system was divided into a number of pilot designated

modes that accomplished different tasks. Table 1.1 shows a summary of these

modes and various aspects involved.

Table 1.1 Mode Summary for SMTD[4:4]

Mode Macb itd •(ft Effe-tei Rlutubd Varltum

S 1. 'uMdn (ab- 0.15-038 0- 10AW Ubiamw +d + bpc +. sam ý lft +

STUL, mf(pit) 0.1I-031 0- I0,,O0 S.•÷e¢+Imd +Bank Pithle+AOA

STVL me= (0 )) G00- 0.a 0 Sabha +.cmu + boom " nm Pl:k rwc

S"/M. 0.0-0.18 0 Sbimu + db= + flbu RON mn
Omslleioadd")sn s + i 4 ,Wld Yaw is

CNW (bpth) 0Q2- 2.0 0-50M000 Siah•+., c, + am& .. how + pis* cm

The main modes of concern are the Cruise, Combat, and STOL Landing.

The Combat mode was designed to improve combat maneuvering and weapons

delivery by using the new technologies. Similarly, the Cruise mode was

designed to improve cruise capability with the added technologies. There was

also a Conventional mode that was used as a baseline to compare to the other

modes as well as a backup in case of failure. The mode that was the focus for

this research was the STOL Landing (Sland) mode. Not only was this one of

the more interesting modes as far the number of effectors, but it was also the

mode with the most amount of readily available data. The object of this mode

was to produce "precise manual control of flight path trajectory, airspeed, and

aircraft attitudes [1:2]," which minimized pilot workload in precise landing.

This was accomplished through decoupling stick and throttle inputs. In other

3



words, stick inputs would not affect airspeed and throttle inputs would not

affect flight path, allowing the pilot to worry only about the flight path with the

stick once a desired approach speed is achieved [1:31.

The actual control laws were developed to allow a touchdown in an area

that is 60 ft long and 20 ft wide. The approach is done by spooling the engine to

100% and closing off the rear nozzle. This formes the exhaust out the upper and

lower vanes which can be vectored both fore and aft. This allows the aircraft

to have precise control of airspeed and immediate thrust reversing upon

touchdown. More information on this can be found in [3].

The Statement of Work on the SMTD program encouraged, but did not

limit, the study to using multivariable control techniques. The two contractors

were McDonnell Douglas Aerospace (McAir), who used a classical approach,

and Honeywell, who used a multivariable approach. The classical technique

used was an Inverse Equivalent System method that used theories similar to

equivalent system fits [1:5]. This method was applied to various modes of the

flight, but this thesis is more concerned with Honeywell's multivariable

approach. Honeywell used the well known LQG/LTR method. This method,

like many other multivariable methods, produces a compensator of order that

is often not practical. Such was the case here, and modal truncation was used

followed by balancing the compensator to produce a practical controller. The

final reduction of the compensator brought the order from fifth to second order.

There was some degradation in the decoupling of the system and care was

taken at each step to check the margins and closed-loop transfer-functions

[1:8]. Although pilot simulation showed that the reduced order compensator

was satisfactory, compensator reduction is a bit of an "art" which is less

desirable than a direct method to find reduced order compensators.
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One of the conclusions obtained by comparing the classical and

multivariable approaches was that, for the simple systems, there were no real

benefits to using the multivariable design. However, for the complex modes

with many effectors, a multivariable method was preferred [1:9]. Considering

that more and more aircraft are relying on such things as fly-by-wire and

thrust vectoring, and with the advent of new effectors (vortex control), the

importance of reduced order (practical) multivariable design techniques

increases tremendously. This thesis will attempt to address this aspect of

control design by first applying full order H2 and H_- theory as a baseline and

then reduced order mixed H2/H. theory to the Sland mode.

1.3 Previous Work

This section will look into five approaches currently being used in the

area of reduced or fixed order control theory. The first is a look into

parameterizing low order H. controllers [6]. The second uses a differential

game approach [7]. The third deals with minimal order controllers based on the

bounded real lemma [8]. The fourth is a Lagrange multiplier approach [10] and

the last is a mixed H2 / H. approach [ 11].

Iwasaki and Skelton [6] present a parameterization of stabilizing

controllers that satisfies a specific H, norm bound and has order less than or

equal to the plant. This is done by taking a Lyapunov approach to the H.

control problem and applying theories that have been developed in covariance

control. (see references 2,10,11,13,21,and 25 in [7]) The Riccati equation in the

bounded real lemma (see reference 24 in [7]) is considered to be a special case

of the Lyapunov equation

AP+PAT+W=0

5



where W is a given symmetric nonnegative definite matrix. The system is

stabilized iff P is nonnegative definite and (A,W) is stabilizable. The matrix P is

referred to as a "Lyapunov matrix" in [6]. This P matrix specifies the order of

the controller in that its dimension is (np+nc), where np is the order of the plant

and nc is the order of the controller. Physical importance is added through W

using covariance theory.

The connection between the bounded real lemma Riccati equation and

the Lyapunov equation above occurs when W includes a quadratic in P. In this

case a nonnegative definite solution also meets an H. norm boi 1 is then

referred to as an "H_ Lyapunov matrix" and the parameterization is based on

this P.

Three main advantages are presented in [6], but two of them are mostly

advantages to the full order case. The reduced order case results in two

coupled Riccati equations that are similar to those in the fixed order mixed

LQG / H. problem. Although [6] does not go into detail about solving these

equations, it does, however, show that under this parameterization, low order

controllers have an observer based structure, which is useful insight into the

problem.

Sweriduk and Calise [7] present a method that improves the

computation of the fixed order problem. A differential game approach is taken

to solve the fixed order H. problem. Sweriduk and Calise derive a performance

index expressed in terms of the states. From this, three necessary conditions

(equations 30-32 in [7:3]) are found from the resulting Lagrangian (see Section

2.3 for more on Lagrange theory). The solution is obtained by a conjugate

gradient method and iterativally reduces the infinity-norm y until it gets close

to optimal. To reduce the number of parameters in the search, the controller is

put into canonical form. [7] also allows the controller to have a nonzero D

6



term, so that it is not restricted to being strictly proper. This procedure shows

good results for the examples presented. Two issues of concern that were

presented were the fact that it remained to be shown whether solutions to the

necessary conditions always exist (given assumptions used) and

computational time, since the gradient search slowed down near the minimum.

The third methodology, by Hsu, Yu, Yeh, and Banda, is presented in [8]

and is somewhat different from the last in that it is not computationally based.

Low order controllers were found to be observer-based in [6] and this is used in

the development of [8]. A Luenberger observer-based controller is applied in

light of the bounded real lemma. The minimal order of this controller is

classically known to be n-p, where n is the number of states in the design model

including any weightings, and p is the number of measurements. The result is

a stabilizing controller that yields a closed loop infinity norm (ITd L) less than

some given y. The main advantage to this method is that the primary

equations are two uncoupled Riccati equations and a Sylvester equation. This

means that the solution process is easy compared to solving two coupled

Riccati equations as in [6]. The disadvantage is that for a large problem the

order of the controller will not be reduced significantly unless there are a large

number of measurements, which may not necessarily be the case. More

information on the application of this method is given in [9].

The fourth method, by DeShetler and Ridgely [10], is similar to the

second in that it uses Lagrange multiplier theory. Using a controller of

arbitrary but fixed order, the closed loop state space is formed. From this, a

minimization problem is set up. The performance index is simply the entropy

of the closed loop system, which is constrained by a Riccati equation based on

the bounded real lemma. Given y, the performance index is minimized by a

gradient technique involving the necessary conditions from the Lagrangian. By

7



iterating on y, the optimal H. level is approached to a given tolerance. Like

other computational methods based on gradients, it was found that, as the

solution approached the minimum, the gradient search got slower. Also, the

actual numerics became less stable as the optimal solution is approached. An

interesting observation was that the minimum y achieved by a strictly proper

controller of order nc is found to be attained with a relative degree zero (the D

term in the controller state space, Dc, is not equal to 0) controller of order nc-1,

although (10] did not prove this was always true.

The final approach, by Walker and Ridgely, is given in [11] and is the

basis for the research in this thesis. This method of reduced order control uses

a mixed H2 / H. performance criterion. The basic idea behind this approach is

that a function is minimized given both H2 and H. objectives. The resulting

compensator order may be low in that it may be chosen to be any order

desired. If the chosen compensator order is greater than or equal to the order

of the H2 part of the problem, some very strong properties of the solution are

known. In the case where a relatively simple H2 problem yet complicated H.

constraints are developed, choosing the compensator order equal to the H2

order results in a reduced order controller. A more in-depth discussion of this

method and how it applies to this research is given in the next chapter.

1.4 Overview

This thesis is broken into six main chapters. Following this introductory

chapter, Chapter 2 is a theory section that goes over the theory used in this

work. Chapter 3 goes through the development of the full and reduced order

design models. The plant, Sland flight, and ideal handling qualities model are

also discussed. The results that were obtained are discussed in Chapter 4 and

8



Chapter 5. Conclusions and recommendations based on these results are

presented in the sixth chapter.

9



Chapter 2. Theory

2.1 H2 Optimization

Before attempts to find a reduced order mixed controller were made, a

full model H2 controller was found. To provide a better understanding of H2,

this part of the section examines the H2 problem based on the discussion in

[12:68-74]. See [12] as well as [13] and [14] for more details. Consider Figure

2.1 which shows the general H2 problem.

w z

U Y

Figure 2.1. General H2 feedback problem

The plant P can be written as

p Pzw Pzu]

or,

z = Pzww + PZuu

y = Pyww + Pyu

The output is shown as z. The feedback measurements, y, are fed into the

controller which produces the control commands u. The exogenous input w is

assumed to be a zero-mean white Gaussian noise of unit intensity. It is desired

10



to minimize the energy or two-norm of the controlled output z; that is, find an

admissible (internally stabilizing) K(s) such that I I z I 12 is minimized.

inf I I z I Iinf I I z I I
Kadmissible II Z 112 = K admissible [ T 12

inf

K admissible I[ Pzw + PzuK[I - PuK]'Ipw I12

where

00

I Tzw 112 2_ 2 Jt4Tzw(o))Tzw(jo)] do)

P can be written in state space form as

x = Ax + Bww + B~u

z = Czx + Dzww + Dzuu

y = Cyx + Dyww + Dyuu

The following assumptions are made:

1. Dzw = 0

2. Dyu=O

3. (A, Bu) stabilizable & (Cy, A) detectable

T _T
4. DzuDzu full rank ; DywD~ full rank

5. [AIOI Bu has full column rank for all (o

6. [A-jo Bw has full row rank for all o
Cy Dyw



To make the formulation of the resulting controller simpler, the scalings

Su and Sy are added to the plant. These are shown in Figure 2.2 and are

simply added into the controller after the synthesis is complete.

W z

Figure 2.2. H2 Feedback Problem with Scalings

The scaled equations are

u = SU

S=SyY

where Su and Sy are such that

T Tsusu = Sz~uDzu

-1-1 TTS, (S,) = DywDr4

If A E Rnxn is symmetric positive definite, then there exists an upper

triangular S e R' with positive diagonal entries such that A = sTs. This is

known as a Cholesky decomposition, which may be used to find Su and Sy. The

"new" plant state and output equations become

12



Ax + Bww+ +u5

z = Czx + Dzii

Y= 6yX + DywW

where

B BuSu' ýy=SC

Df)= DzuSu1 Dyw = SyDyw

The optimal compensator is unique,[T,. 12 = ao, and is given by

Aj = A -If Cy -IuKc
K gT DTC

Kf = Y2 C ÷DBwT

Here, X2 and Y2 are the real, unique, symmetric positive semidefinite solutions

to the algebraic Riccati equations:

13



(A- g )TX + X2( A - T X2-.fjTx2 + tz = 0(A~~ ~ zu zu=T2X

where

T(I _ fzuf5T )Cz

and

(A- Bwt5•Ay )Y2 + Y2 ( A - Bw w yT )T. Y2- ! Ty2 + Aw]T = 0

where

S= Bw(I - 5 )

After the scalings are put back into the compensator, the resulting K20pt(S) is
given by

where

and can be seen in Figure 2.3.

14



Figure 2.3. H2 Optimal Diagram with Scalings to Compensator

2.2 H-. Optimization

The other form of optimization that is dealt with in this work is H_.

optimization. The theory behind this is given below and is taken from [12:74-

81].

d a

V r

Figure 2.5. H_. Feedback Problem
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Consider the problem shown in Figure 2.5. In this set-up d is assumed to

be an exogenous input with unknown but bounded energy. The problem is to

find an internally stabilizing K(s) that minimizes the energy of the output e.

This can be written as:
inf IAinf IP,+PUK(I-P

K stabilizing - K stabilizing P 'P1

where

ITL=sup [T ] and P= [PyW P..

Given the state space for P

S= Ax + Bdd+Bu

e = Cx +Ddd + D,,u

y = Cyx + DYd + D3Mu

the following assumptions are made:

1. Ded=O

2. Dyu=O

3. (A,Bu) is stabilizable and (CyA) is detectable

4. T and DydDT have full rank

[A- jiI BU] has full column rank for all co
5. Ce DMI

6. [A-JmI Rd 1 has full row rank for all ow

[C y D I

The scalings S-' and S, shown in Figure 2.5 make the formulation of the

resulting controller simpler. They are then incorporated into the controller

after the synthesis is complete.

Finding solutions to the optimal H. problem is based on the

parameterization of all suboptimal compensators and iterating the norm down

to arbitrarily close to optimal. Let
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K(s)=FI(J(s),Q(s)); family of all admissible compensators
that satisfy IT L <r

where

iQY j F Aj Kr KR]
J(s) = jx j- K 1 0

[iv lr d .0 1]

and
Aj = A- KfC, -. K. + r-Y.C: (C. -D)mKc)

K (BX. + DbC.)(I- _- 2Y.X._)-

Kf = Y.., + BdD)T

KC1 = -( fId)BIX.- + C, )(I - r-'2 YX)-'

Ka = Y.CD, + A.

where the tilde matrices are those that include the scaling in the state space.

X- and Y- are the solutions to the algebraic Riccati equations.

(A B-IAUC.) T X._ + X.(A- 3,)Co)+ X_.(r-2B - 1 - =0

where(C (I U - beub T= - .. D.)C.

and

(A - BdIC )TY.. + Y.(A- BdDCY) + Y.(-C 0 C- - CY )Y-. + BdB] =0

where 3d = By(I-DD)

Finally,
Q e RH.; IQL < 7 which means that the

optimal is not unique
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Given the Hamiltonian matrices in (12:79-80], the parameterization above is

valid if and only if the following are satisfied:

1. Hx e dom(Ric) with X. =Ric(Hx) > 0

2. Hye dom(Ric) with Y. = Ric(Hy) > 0

3. p(Y.X.) < y2

See (12] for more discussion on Hamiltonians and dom(Ric). This forms

the basis for finding H. controllers. If one of these conditions is not satisfied,

then y must be increased. Therefore, one can get arbitrarily close to the

optimal by iteration. See [14] for more on this subject.

2.3 Mixed H2 / H. Optimization

After designing a full order controller, this thesis examined the

application of mixed H 2 / H. theory to find a low order solution. The basic idea

is to push the mixed problem close to the optimal H. solution (for good tracking

and/or margins) while retaining the low order and noise and disturbance

rejection properties of the H2 problem. The theory behind this is given in [11]

and is discussed below.

For the mixed H2 / H. problem we have the system shown in Figure 2.5:

d lo
w ) P Z

U y
SK

Figure 2.5. Mixed H2 / H. System
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where,
[A Bd B. B

P cc D~d D.. D.Ca Dd D.

ýCy Dyd DrW D.

In this system, P is the entire weighted system consisting of both the H 2 and

H- parts of the problem. The signals w and z are the inputs and controlled

outputs of the H 2 part of the problem, respectively. Likewise, d and e are the

inputs and outputs of the H. problem, respectively. It is not necessary to

have any correlation between e and z or d and w. W is assumed to be zero

mean, unit intensity, white Gaussian noise and d is of bounded energy. The

measured output is y and the control input is u, which are the same for both

the H 2 and H. parts of the problem.

The state space equations for the H 2 problem are:

x2 = A2x2 +Bww+B. 2u

z = C.x 2 + Dw + DMu

y = C 2x2 + DY, w + Dyu

The state space equations for the H_ problem are:

ic- = A-x. + B 4d + B.u

e = Cx. + Ddd + D0,u

y = CY.x. + Dydd + DYu

The mixed H 2 / H. problem is: Find an internally stabilizing K(s) that

achieves

K inf
stabilizing IT2 ,I subject t ITdL < '

where the dosed loop transfer functions are
T., = C.(sl - A2)-'B,, + D.,

T~d = C,(sl - A-)-' Bd+ Dd
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These transfer functions are found from closing the loop for each

system, using the controller state space.

ix = Aexe + Bey
U = Cox€

One can see that there is no Dc term in the controller. This is due to the

fact that for IT.- 2 to be finite, Dc must be zero.

The assumptions made to solve this problem are:

1. Dzw = 0

2. DYU =0

3. (A2, B. 2 ) stabilizable (Cy2 , A2) detectable

4. (A., B,.) stabilizable (C., A.) detectable

5. DTD., full rank and D T,D, full rank

6. [A"- JI B.DB. has full column rank for all o

7. A_ -[.jw BD] has full row rank for all ao

I AY-joydI B

8. [A2L. D J has ful column rank for a.1

9. AC2 D[(' BW has full row rank for all o

There are no restrictions on Ded, Deu, or Dyd. The closed loop system is

written as
2 = A2X2 + Bw

z = Cx

k_ = A x + Bdd
e = C.x. +ODd

In order to be a solution to the mixed problem the following must be

satisfied:

1. A_ and A2 are stable

2. IT-dL < y for some given y > yo
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3. IT.-L is minimized

With this in mind, and using Theorem 1 in [11], the problem can be

rewritten as: find K(s) that minimizes

J(AC,BC,CC) = tr[QCT=C. ]

where 02 is the real, symmetric, positive semidefinite solution to the Lyapunov

equation

A, 2 + 0 2AI + BB. = 0

and such that there exists a real, symmetric, positive semidefinite solution to

the. Riccati equation

A-0- +.A. + (Q.CT, +BdDT)R-(O.C+T d)T +BBdT =0

where R = (yI-DedD.) > 0

This is a minimization problem with two equality constraints. One way

to solve this is by using the method of Lagrange multipliers. With this method,

a function F can be minimized with an equality constraint G=O by setting up

the Lagrangian

L=F + GX, where X is a Lagrange multiplier

First order necessary conditions are found by taking
dL

=0; where x, are the unknowns in the problem

and solving for the xi's, which include X.

For this problem, the Lagrangian is (see [11])

L = tr[0 2CTCjI+ tr{[ A.Q 2 + OA + BBT IX)

+ tr[ Ak... + -A! + (Q.C. + BdD. )R-(..C + XBD ) ((2.1)

+ BdBd]Y}

with the symmetric Lagrange multiplier matrices X and Y.
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N7 -

The following definitions are made when finding the first order necessary

conditions:

M = R-DdD~yd

Vl= T R-1 gT
P2 =DTR D.dB

P2 = DIMB•

02 =rIQ Q12

LQ12 Q2/

rx, x,21
x=YT x, J

1' Y12

Y. = Y BT2 j

BCDy w- C B VT B V B T

Bd(D R -'D., + I)B BC ](DTR-'D, +I)[Bd DB,]

= b~ BCVbBJ

c. C. T [ CZ DZUC, = R R12C

C.TR_'C _r C' ]R-'[C. D=Cc]= CT RC
LTC=DJ C TrR CRbC=J

With these definitions, the first order necessary conditions for the

Lagrangian are:
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dL = xTQ,, + X YQ T + + Y2Qb 0
dA

dL = XQ7 +T
+Y2QICT +X2QTCT X + V +yT QC

dBe 2 1 2 1V 2+XBV 12• y.-

+ YCQ + y +

+ (Y12Q, + Y 2 Q )cM

+ Q,b + Y2Qb)C.DM = 0

aL = BU2XQ12 + BT2XI2Q2 + RLQI2 + R 2CCQ 2 + B,.yIQ.
dC•

Ty T yby a, + wR.•T

BGY1 2Qb + RTbQaY.Q~b + RobQ~jYJ 2Qb + b'Q.y12Qb

+ R.bQ.bY 2Qb + RbCCQylQQ + RbCcQbyTQab

"+ RbC.Q•Yl 2Qb + RbCcQbY 2Qb + P1 (YIQ-1 + Y12Qb)
+P2 (Y2Q-b +YQb) 0

d= A02 + O2AI + B.B.T = 0
S=• A+~ = 0

"+(Q.CT +BdDT)R-'(Q..C +BdD) T  (2.2)

"+ BdBi =0

( -BDTR-'C. + Q.CT R-'C, )TY

+ Y(A. + BdDR-'C. + O.C.R-'Cc) = 0 (2.3)

Unfortunately, these equations have not been solved analytically.

Equation (2.1), however, shows that for Y=0 the solution is not on the H.

constraint boundary since the third term in (2.1) will be zero for any solution to

the H. Riccati equation in that third term. Equation (2.2) implies that if

Re[,(A + BdDTR-'C. +Q.TCR-C.)] =0 for some i, the solution is on the
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boundary of the H. constraint and that 0. is the neutrally stabilizing solution

to (2.3).

Some interesting aspects of the problem can be seen in Figure 2.6.

IIT

a.

II Tel.
Figure 2.6. Mixed Boundary Plot

The optimal H 2 norm of Tzw is ao and results in an infinity-norm of Ted equal

to y2. Since there is no controller of any order below y. (the optimal IT- L),
the mixed problem will not have a solution with y below yo. Therefore, y

chosen between yo and y 2 results in an active constraint. As one can see, the

2-norm of Tzw at the optimal H. controller is usually infinite. By posing a

simple (statically weighted) H2 problem, one can get a reduced order controller

that is close to ao and yo by moving along the curve to the "corner". This is

the basic idea behind the reduced order method examined in this research.

As mentioned earlier, the first order necessary conditions have no

analytical solution. Therefore, this problem must be attacked numerically.

For the method used in this research, the following approach is taken.

Define the performance index
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Jr= IT4+)(l- ITrL)2

where ). is a penalty on the error between the desired and actual infinity-norm

of the transfer function. In minimizing this index, the two-norm of the H2

problem will be minimized and the infinity-norm of the constraint will try and

match the desired infinity-norm value y. For each value of y a new controller is

found by minimizing Jr. Let

X=[alT .. an bhT ..- bpT cif ... cmT]T

where ai, bi, and ci are the columns of Ac, Bc, and Cc. Given this, the first

order necessary conditions are:

dJ =0 fori= ,...,(n2 +n*p+n*m)ax,

-aT•: J~(1d Tl (2.4)
- x + x

where xi represents the i th element of the solution vector X.

By using the fact that IT•,,( = tr{Q2 C.'C,) the first part of the right

hand side of equation (2.4) can be found analytically. In the past, the second

required the use of numerical computations of modified central differences

which often led to numerical difficulties. A method of analytically calculating

the derivative of an infinity-norm was found in (15] which not only helped the

accuracy of the calculations but decreased the numerical difficulties associated

with using Hamiltonians and increased the speed of the optimization.

A Davidon-Fletcher-Powell(DFP) routine is used to find the X that

minimizes the performance index. One improvement over previous mixed

H2 /H_ solvers [11:1,2] is that a parabola fit is used instead of a bisection
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method in the search. This results in lower computational effort. Another

aspect of the solver is that, if an unstable solution is found, the step size is

decreased and the search is continued. This allows the use of large step sizes in

y~, but as y approaches optimal, y is kept above 'yo. This is necessary since we

are only interested in stabilizing controllers.

The algorithm for this solver is outlined below.

1. Set up initial X vector from a controller that
stabilizes both problems

2. Compute y2 and set "=Y2

3. Decrease y

4. DFP search over X vector space to minimize
performance index

5. Store X and repeat from 3.

Although the size of X can be reduced using canonical forms of the

controller, it would have made little difference in this research since it would

only reduce the size of X by 10% at the most. Also, the program can be run

using lower order controllers than that of the H2 problem, but then Theorem 2

in [11:10] does not necessarily apply, and there is no guarantee of existence of

a solution.

This chapter has outlined H2, H_,and mixed H21/H_. theory. The designs

that utilized these theories are developed in the next chapter.
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Chapter 3. Model Development

3.1 Plant and Sland Flight Condition

As mentioned before, the primary flight condition used in this research

was the Sland mode. This mode utilizes the stabilator, canard, flaperon/aileron,

and vanes. These effectors allow the pilot to utilize speed hold so that he is

only concerned about the pitch attitude of the aircraft. Once the pilot is on

approach, the control system keeps the vehicle speed constant even though its

attitude is changed.

The flight data used in this research can be found in Table 15 and 16 in

[4:87,89]. This is for the longitudinal state space which is based on the

equations given below in Table 3.1.

Table 3.1
Longitudinal State Space Equations for Sland[4:81]

Noes

04: 9
-Cx+ WO 7 327Mh

LV OW OmO* (0AB

"-.I0 e
%"I *ZVr. 4 3•ebVT +ZNT +1.0 +-

-1 do VTC0 -VT - - h
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The effectors and their maximum deflections are shown below.

Canard deg -35 / + 15'
Stabilator deg -29/+15

Flap deg -20/+20
Effectors Aileron deg -20/ +20

Right Top Vane deg +35/+75

Right Bottom Vane deg +35 / +75
Left Top Vane deg +35/+75

Left Bottom Vane deg +35/ +75

The actual state space data is shown below and is from Table 16 in
[4:89].

x=Ax+Pu
y=Cx+Du

-0.1729 -30.62 -12.49 0 0
0 0 0 1 0

A= -0.00264 -0.0583 -0.3129 1 0
0.001067 0 0.7453 -0.3813 0

0 168.7 -168.7 0 0

"0.003912 -0.08876 -0.042 -0.042
0 0 0 0

B= -0.000837 -0.001365 -0.0002601 -0.0002601..
0.0117 -0.02452 0.0008338 0.0008338

0 0 0 0

-0.5352 -0.09201 -0.5352 -0.09201
0 0 0 0

... 0.0005339 -0.0001733 0.0005339 -0.0001733
0.007877 -0.007061 0.007877 -0.007061

0 0 0 0
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0.0148 0 1.681 0 0

0.01538 0 2.067 -0.1975 0

1 0 0 0 0

C 0 57.3 0 0 0

0 0 57.3 0 0

0 0 0 57.3 0

0 0 0 0 57.3

"0.004142 0.00766 0.00169 0.00169

0.0102 -0.00504 0.002131 0.002131

0 0 0 0

D 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

-0.002154 0.001734 -0.002154 0.001734"

0.001926 -0.001915 0.001926 -0.001915

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Pertinent information about the flight condition at which this state

space was calculated is shown in Table 3.2.
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Table 3.2
Initial Conditions for Sland State Space Calculations

Item Value
Mach 0.151

Altitude 0.0 ft
Weight 34,265 lb.

AOA 17.9 deg
Pitch Attitude 17.9 deg

Flight Path Angle 0.0 deg
Stabilator +4.1 deg

Flap/Aileron +20.0 deg
Top Vanes +52.1 deg

Bottom Vanes +52.1 deg
Canard -14.0 deg

From the table, one can see that the Sland flight condition is basically

steady level flight at sea level conditions at a typical approach speed. Even

though in Section 3.3.2 this state space will be modified for use in the design

model, it forms the basis for the work in this thesis.

3.2 Ideal Model Development

The ideal response is given in [4:5,6] and is based on the desire to

perform precise landings in the manner that was discussed before. There are

two main inputs into the system: the stick and throttle. The stick is to control

the pitch and the throttle to control the speed. The three outputs of concern

for this mode are the pitch rate, angle of attack, and velocity. The desired

responses [4:3-7] to stick inputs are shown below:

W2

a n/a g e-Ts deg/in.
stick s2 + 2gws + ( 2

GW2[I(V) / (n))s +1]
q 2 g a e-Tds (deg I s) I in.

stick s2 + 2 ws + oes

-U 0 (ft./s)/in
stick
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where,

n = -zI g/rad
a g

0.6:• q 0.8

o) > 2.0 rad / sec

[- ](-) = 7.5
ni/a g

and,
Td = time delay < 100 msec

G = stick gain = 2.0 (deg sec)/ in.

The response should follow these transfer functions from 0.5 to 20

rad/sec. By a simple inspection of these, one can see that the ideal model is a

decoupled response, which is what was mentioned earlier. Also notice that, by

describing the angle of attack response, the pilot is indirectly controlling the

rate of change of the flight path angle.

The response to the throttle is slightly different. In this case the desired

response [4:6] is first order instead of second and is shown below:

SU =G a--e-T4 (ft /sec)/ deg
throttle s+a

q 0; a 0
throttle throttle

where,

G=5 (ft/sec)/deg

0.1_< a_ •0.2 rad / sec

Td !5150 msec
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One can see that this response is also decoupled. In both sets of

responses there is a G term that is a gain. This value will be omitted for the

actual design model. The resulting responses will then be to pitch rate

command and velocity command. The actual stick and throttle deflections can

be found from the respective G term. For example, a two deg/sec pitch rate

command corresponds to a one inch deflection of the stick.

Notice that there are ranges in the values in the responses. These

values needed to be specified at particular values from the admissible ranges

and are as follows:

co = 5 rad / sec

9 =.7

a =.15

Td = 0

The resulting transfer function matrix is found by substituting these

values into the desired response equations (while dropping the stick and

throttle gain) and is:

7.5
a a s2 +7s+25 0

qc Uc
G=q q _ 25(.3s+1) 0

q. U = s 2+7s+25
U U 0 .15

q, Uc s+.15

This is the transfer function that is the ideal model that the design model

will attempt to match.
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3.3 Full Design Model

The actual aircraft model that is the basis for the full design model is

shown in Figure 3.1. By "full" model, it is meant the model that would be used if

no separation of the problem into H2 and H_ sub-parts were used.

CanardStabilator,Flap,
Top Vanes, Bottom Vanes

Stickc) "_Theta
Throttle(Uc Plant Alpha

Figure 3.1. Aircraft Control Model

As one can see, the controller is a two degree of freedom (DOF) controller

and some of the effectors have been combined. Examining the state space

given in Section 3.1, one can see that the right and left top vanes have the

same effect on the system. The same can be said for the right and left bottom

vanes and the flap and aileron. Therefore, these were combined. This helps

reduce the number of parameters in the controller that must be found, and

thereby helps reduce computation times.

For any design model there are some given goals. For most cases this

can be broken down into tracking, noise rejection, control usage, and

disturbance rejection. This model is slightly different in that it is concerned

with a model match instead of tracking, but is standard in that it is concerned

with control usage and rejecting noises and disturbances. With these things in

mind, Figure 3.2 was developed.
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Gy 1

Gi- WdI

Figure 3.2. Design Model

This figure is based on the PK form of creating a design model. The y's

are fed back into the controller which gives the effector commands, u. As one

can see, this model attacks the four concerns mentioned earlier. The

examination of this model will consist of first looking at the inputs and outputs,

then the plant and weightings, and finally a look at the total state space

derivation and transfer function analysis.

3.3.1 Inputs and Outputs of the System

The inputs and outputs of the system are very str ightforward and are

as follows:
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[x P, Sland plant states 1

Design States : = xi -= ideal closed loop states
Xd [ wind disturbance states
x1 J matching weighting statesJ

Controlled Outputs: z = { I}I= {Weighted Error o
IZ2 Weighted Actuators

q
Inputs: w = W2 Disturbance

IWs Sensor NoiseJ

qm

Measurements: = aY jam)

An early design included the outputs of the plant as actual outputs in

the design. This proved to be unwise since it directly conflicted with the ideal

model match by forcing all the outputs to zero. Also, on early models the

normal acceleration was included in the measurements. The responses were

good but the plant had a non-zero D term which caused the Dyu term of the

design model to be non-zero. This violated the conditions in most of the reduced

order control methods described in Chapter 1. This choice of measurements

(without normal acceleration) also more closely resembled what was done by

Honeywell in the SMTD program.

3.3.2 Plant and Weightings

The plant (Ap,Bp,Cp,Dp) was changed slightly from what was given in

Section 3.1. It was found early on that the altitude state caused problems in
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that it interfered with the tracking of the resulting controller. As a result this

state was removed from the original plant to produce the design plant

(Am,Bm,Cm,Dm ). Other changes made to the original included removing the

normal acceleration outputs and combining some of the effectors. These

changes produced the following state space of the plant:

-0.1729 -30.62 -12.49 0

Am = 0 0 0 1
-0.00264 -0.0583 -0.3129 1
0.001067 0 0.7453 -0.3813

[0.0039 -0.0888 -0.0840 -. 1070 -. 18401

B0 0 0 00
-0.0008 -0.0014 -0.0005 0.0011 -0.00031
0.0117 -0.0245 0.0017 0.0158 -0.0141]

-10 00 0]

CM = 0 57.3 0 0

0 0 57.3 0

-0 0 0 57.3j0 0 0 0 0]
00001

DM = 00 0 00

0 0 00

The outputs from this system are the states (in degrees instead of

radians) which are U, 0, a, and q. The inputs are canard, stabilator,

flap/aileron, top vane, and bottom vane. This means that u and z2 are 5

dimensional vectors and yl is a 4 dimensional vector.

To keep the order of this system down to a reasonable level, it was

decided to use static weights in certain areas since adding dynamics to each

control input and measurement would greatly increase the order of the

controller. The two static weights are
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"0.28 0 0 0 0 canard
0 0.14 0 0 0 stabilator

Da = 0 0 0.35 0 0 flap / aileron
0 0 0 0.14 0 top vanes

0 0 0 0 0.14 bottom vanes

236 0 0 lie
Dn= 0 0.2236 0 0 1 0 q

0 0.3162 0 a
0 0 0 0. 1414J q

The first is the actuator (control) weighting and the second is a noise

weighting. The actuator weighting was found after many iterations while the

noise weighting was the square root of the expected magnitude of the noise in

each channel. Variations in the actuator weightings were needed once the rate

and deflection limiters were put into the model. The noise weight became

important once noises were introduced.

Looking at Figure 3.2, one can see that there is also dynamics in the

wind disturbance model. It consists of the following:

10.0187 -1

w2' (s + 6.7)[

Figure 3.3. Wind Disturbance Model

This is a low pass transfer function, and the wind becomes an a disturbance by

letting r equal the column corresponding to a in Am.

The transfer function Gi is the ideal model that was discussed earlier in

Section 3.2. This leaves WI and MI. MI is a selector matrix that selects a, q,

and U of the plant, and is
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M, = 0 0
0 0 0J

WI is the weighting on the error between the output of the ideal model and the

design plant. This is a 3 x 3 diagonal transfer function given by

W, = s+ 0.05 0 10
s+ 0.000 0 0.1.

This was based on the weight shown in [9] and has the singular value plot

shown in Figure 3.4. Although runs were made with variations of this, it was

10 10- l0 10. 10 101

Frequency (raclVsec)
Figure 3.4. Singular Value Plot for WI

found that this weighting produced very good results. It was found that the

channels could be changed by changing the gain in the numerator pertaining to

that channel. For example, from flight testing it was found that the most

important response to the pilots was the q response. Therefore, the other two

responses were weighted less.
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3.3.3 Equation Development and Transfer Function Analysis

In order for this system to be analyzed, it must be put into a state space

of the form

A B. B

.Cy DYW DY

The definitions for the various inputs , outputs, and states are in Section 3.3.1.

From these definitions and Figure 3.2, the state equations can be derived as

xip -AmXP +BmU+ CdXd+GDdW2

i- Aixi + Biw1

x' = Adxd + Bdw 2

xl = AIX, + BICixi + B1Djwj - B1MCxp - BIM 1DMU

The equations for the output e and feedback y are

Z= = CIx1 + D1Cjxi + DJD id, - DIMiCmXp - DIMiDmu

Z2 = Dau

Y, = CmXp + Dmu + Dhw 3

Y2 = W1

The PK state space is found from the above equations, and is

Am 0 G~ 0- 0 GDd 0] [B ]
0 Ai 0 0 Bi 0 0~ 0[ o0 + Bd 0 W+ o0 D

L-BIM 1C. B1C 0 Ad J LBD[ 0 B [_BM0DJ

Z=1-DMC0 0 0 x+ 1 0 0 [DD1 1 a +

- 0 0 0 X+ 1 0 0 w
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This model has a total of 11 states, 8 outputs, 6 measurements, 5 u-

inputs, and 7 d-inputs. This system was formed by two computer programs

run in Matlab [16] (the Matlab programs developed for this research can be

found in Appendix B). The first one, ACDF2.M, formed the design plant and set

up the weightings. The second, PFF.M, formed the PK form of the state space

based on the above equations and packed it into a system matrix called 'sys'.

This was then used in the Matlab routine H2SYN.M to get the full order design.

To get a better idea of what the design model was trying to accomplish, a

transfer function analysis was done. This was done in a manner similar to that

of the state space derivation, but kept in transfer function form. First, let G

denote the design plant and yg the design plant output.

Then define the following:

z = Giw1 - MiYg

k= Amx + BmU + GWdw 2

x(s) = (sI - Am)-' Bmu + (sI - Am)-'GWdw 2

Yg = Cmx + DmU

The output yg is then

yg(s) = [Cm(sI - Am)-'B, + DmJU + Cm(sI - Am)-'GWdw 2

or

YX =Gu+GrWdw 2, whereGr =Cm(SI - Am)-G

Z1, z2, yl, and y2 can be found using the previous expressions.
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zi= W1Gjwj - WM 1Gu - WJMIGrWdW 2

z= D~u

Y1 = yg + DOWt3

Y2 = WI

Now the loop is closed and the transfer functions for the output-- and

measremnts are found. Letting

u = Kly1 + K2y2 =Kly1 + K2W1

and closing the loop on yj gives

yj= [I - GK 1 -1 GK 2W + [I -GKI]F'GrWdW 2 +[I -GKIIf'D DW 3

z,= WG~w1 - W1M1GK~yl - W1M1GK2WI - WIMIGrWdW2

Z2= D&KIy 1 + DaK 2 WI

Substituting for yi yields

z, = WI{G1 - MGK2 -M1 GKI(I-GK,1-'GK 2)WI
- WI(MiGrWd + MIGKI [I -GKJ'-1GrWd)W 2

2= D.((KjI[ -GK 1V-'GK 2 + K2)W + K,[I -GKIV-'GrWdW 2

+ K1[I -GK 1 -'D DqW3 )

Let
S. a [I - GK I]- = Output Sensitivity

T. S. - I = [I - GK,]r1 GK, = Output Complementary Sensitivity

Therefore

zi= W, I[G1 - M1S0GK2]W1 -[MISOGrWd IW2 - [MT.Dq]IW3 )

z= D11(SiK 2W1 + KISoGrWdW2 + KISOD "w3 )
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One can see that this model boils down to model match (first term) vs.

disturbance rejection (second term) vs. noise rejection (third term). This type

of problem usually leads to some sort of compromise between the three, except

that there is also the control usage aspect. This can lead to conflicts. An

advantage of the mixed H2 / H- method is that the H constraint can be

singular, which helps to reduce these conflicts.

3.4 Mixed H2 / H. Models

The heart of the mixed H2 / H- synthesis is the H2 model. The main

concern in this design model was to serve as a provider of a low order problem

that also provided noise and disturbance rejection. The design was based on

Figure 3.5.

z2 wI l•'

•I
2Y

AmT

w3

Figure 3.5. H2 Design Model

The key phrase when describing this model is: simple. Although the

model was designed to produce good noise and disturbance rejection, its main

goal was to produce a low order controller. With this in mind, all the weightings

were gain matrices and the plant was the same as that used in the full

problem. U, yl and y2 were the same as the full model. wl was a disturbance

that was fed into the plant. w2 was a noise that was fed into the measurement

y l. The input w3 represented the stick and throttle. Note that this is

"detached" as this is a 1 DOF design, but the H_ part will be 2 DOF. H and Da
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were simply the weighted state and control usage. Since the order of this

problem was four, the resulting controller was also fourth order. This was a

reduction of seven from the full case.

The resulting equations were

i = Ax + Qlwl + Bmu

Y1 = DqW2 +CMX

Y2= R2w3

Zi = Hx

z2 = Dau

wh-,.h forms the state space

A2 =Am B "=[Q, 0 0] Bu=Bm

[H I D,.. = [ 01 D. D=

Cy =[ ] Dyw = [0 DoR2]Du 0

The only two parameters that were tunable were H and Da. The others

were fixed given the noise and disturbance, and are shown below.

Dq = Noise matrix given previously

R2 = 12x2

Q1 = 0.00279 * r (dc gain of F* Wd(s))

The tunable parameters were adjusted so that a regulator with good noise and

disturbance rejection was found. They are shown below.

H = 0.9"* I 4 4

"0.05 0 0 0 0

0 0.05 0 0

Da 0 0 .25 0 0
0 0 0 0.1 0
0 0 0 0 0.j
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The system shown was produced by the Matlab routines ACDFH2.M

and PFH2.M, shown in Appendix B.

The H. constraints (both tracking and robustness) can be derived from

Figure 3.6:

Ie3'41"L Da G 1

Figure 3.6. General Constraint Diagram

The matrix equations for the design were found using state space

manipulation and are shown below.

*i A 0 0 0 0 0_0 "B"

ii 0 Ai 0 0 0 Bi 0 0
i= -BIMIC BCj A, 0 0 X+ 0 0 d + 0U

i BiC 0 0 Al 0 0 0 2 0

i2 0 0 0 0 A2  0 B2  .0.

[e, [-DIMIC D1C1 C, 00 00 0
ee2 = D1C Ci 0 0 X+ d+ 0 u

e3 0 0 0 0 ][ 0]

IY:I00 ][0 D21 1 [01

One can choose any of the possible transfer function combinations

depending on what aspects of the problem are desired. For example, this
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research desired good model following and stability margins. The tracking

consists of the transfer function ei/di and the margins are related by the

complementary sensitivity which is e2/d2. Both of these are singular problems

that cannot be solved by the standard approach described in Chapter 2.

However, if one desires to get an idea of how the singular problems would

perform, one can simply add in the necessary inputs or outputs but use very

small weightings (10-5) so that the additions are not noticed. In order to do H.

optimization, the number of outputs e must be greater or equal to the number

of inputs d which must be greater than or equal to the number of

measurements y so certain outputs and inputs must be added to meet this

requirement. This approach was taken in this work.

The only tunable parameter in the tracking constraint was the weight

WI. By doing full order H. synthesis (in the same manner as mentioned

above), a good weight was found and is shown below.

(s+ 10-2)

(s + l0-1)(s + 10) I303

The singular value plot for this is shown in Figure 3.7.

20

'• 10

-10

-20

10-3 100 103

Frequency (rad/sec)

Figure 3.7. Singular Value Plot for W,

This weight is somewhat different from the standard weighting used to

produce good tracking or model following. Through the full model analysis, it
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was found that the dc value of the pitch rate magnitude is always 0.0. Since

the ideal model dc value is 1, there is always an error of 1. If one uses a

standard weight that has a high gain at very low frequency, the absolutely

lowest achievable infinity norm of any synthesis done (given the setup of the

model following) would be the dc value of the weight. This leads to a poorly

scaled problem. Although satisfactory responses can be found using the

standard weighting and full model synthesis, it was found that in the mixed

problem it did not produce acceptable results.

Like the tracking problem, the only tunable aspect of the margin

constraint was the weight W1. An acceptable weight is

- 70(s+ 100) 1
= (8+ 10000) 4x4

and has the following magnitude plot.
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Figure 3.8. Margin Output Weighting

This weight tells the system that there is potentially 70% modeling error

(unmodeled dynamics, errors in aerodynamic derivatives, etc.) at low frequency

which increase with increasing frequency.

There were two primary ways to run the program. If one was starting

with an initial guess, RUNOPT.M would be used. This would call programs

that set up the H2 problem and the constraint and would start the program
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from the H2 optimal controller. If it was desired to restart from a previous run,

RROPT.M was used. In this program, the H2 problem and the constraint are

set up, and a point from a previous run is specified as the starting point. In

both programs, there are four main parameters that can be adjusted. They

are the y step size, the number of steps, the number of iterations, and X. The

first two are self explanatory, the third is how many steps are to be taken in

the Davidon-Fletcher-Powell (DFP) search, and X is the factor in the

performance index given in Section 2.2. This determines how accurate the y

step is to be.

3.5 Evaluation Model and Closed Loop System

A very important part of any design is the analysis of the response. For

this work, this will consist of looking at the closed loop system and also using

an evaluation model with nonlinearities. This section will examine both by

deriving the closed loop system, and then examining the Simulink [16]

evaluation model.

The closed loop state space is found by taking the plant and forming a

PK system based on Figure 3.1 and closing the loop. The plant states can be

written as follows:

i = Ax + Bed + Buu (3.1)

e = Cx + Ddd + D.uu (3.2)

y=Cyx+Dydd + Dyu (3.3)

The controller state space is

xc = ACXC + Bey (3.4)

u = CCxC + DCy (3.5)

The desired form of the closed loop system is
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LU =[Af + [Bd]d

e = [C'] x

Substituting (3.3) into (3.5) yields

U = C~xC + DCx + DDyd + DDyu

or

(I- DCD.)u = COxC + DeCyx + DcDyd

Letting S =(I -DD,D,)-1 yields

u = S(CCx. + DeCyx + DcDydd) (3.6)

Substituting (3.6) into (3.1) and (3.2) and (3.3) into (3.4) yields

S= A x + Bdd + B .S(C~x. + D ,C yx + D CD yd)

e = Cex + Ddd + DS(Ccx. + DCyx + DCDydd)

ic = A~xC + BeCyx + BCDyd + BCDYu

= AcxC + BeCyx + BeDydd + BCD•S(CCxC + DCCYx + DCDydd)

= [A. + BCD TSC, Jxc + [BcCy + BcDSDcCy ]x + [BCDYd + BcDYSDcD 21]d

The above equations form the closed loop state space, given by

= A + BUSDCCY BUSCC lX+ [ 4 B+BuSDcDd idSB Cy + BCD SD+CC AC + BCDr SCe BCD + BD SDD d

e = [C. + D°USDCCY DVSCC ]X + [Vd + D°USDCD) ]d

This is easily implemented into a Matlab program so that the closed loop

system is found. This was found not only to be valuable in analyzing the

singular value plots, but also in confirming that any reduction in a controller

order was still stabilizing. This derivation has been somewhat generic, in that
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it can be applied to just about any system as long as it is in PK form. The

evaluation model will be a bit more complicated and specific to this problem.

The evaluation model was made using Simulink and is shown in Figure

3.9:

uxIdeaUl • m .01. C0k To Workspace

Dist gurne 3.9. Sinmuic k Evaluation111111 ' Moe

Stick 1Tor- "-I ,.,.. W dqN 2

S uDm 1 Y

Thepuros ofthi mdelist prouc repne of u the airrkaftosic

Conroler=tClD

disturbanceadbackCn.atuator limtatons Then implmen atoofth latthe

model wil be dscussed

A c an se te ae thre spaces : rScrtor
Mdal Dynamics. ircs

aoupl oSensor Nols s

Figure 3.9. Simustnk Evaluation Mode s

The purpose of this model is to produce responses of the aircraft to stick

and throttle inputs (q and U commands) in the presence of sensor noise, wind

disturbance, and actuator limitations. The implementation of the last three

aspects is the main part of this discussion, but first the other parts of the

model will be discussed.

As one can see there are three state spaces: Aircraft, Controller, and

Ideal Dynamics. Aircraft is the aircraft model that was given as Ap, Bp, Cp,

and Dp in Section 3.2 with a couple of changes. The various similar effectors

are combined into five effectors just like in the design state space. There is

also an extra column in the B and D matrices. The column added to B is the

same as the r mentioned earlier which was just the ax column of Ap. This is

where the wind disturbance is fed into the state space. A zero column is added

to D. The actual names for the different matrices in the Matlab workspace are
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atm, btm, ctm, and dtm which are produced by the program SIMSET2.M. The

Controller state space is simply the controller state space of the designs. It is

ak, bk, ck, and dk in the workspace. The Ideal Dynamics is the exact same

state space ai, bi, ci, and di that is used for the design model. Both the ideal

response and the aircraft response are saved to the workspace as yi and y,

respectively. They can also be observed on the two scopes.

As mentioned previously, the real essense of the model is in the noises,

wind disturbance, and actuator limitations. Figure 3.10 shows what is used to

simulate the sensor noise.

Transfer Fcn3

4 ~~G!&inl .0

Figure 3.10. Simulink Sensor Noise Model

What is really needed as an input is colored Gaussian noise. This is

accomplished by feeding the source, "White Noise for Continuous Systems"

into the high pass transfer function

s+0.01G(s)T=
s+ 10

The gain by which the output is multiplied is dependent upon two things. One
is the expected variance of the measurement and the sample rate chosen in
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the White Noise source. A sample rate of 100 Hz was used and this

corresponded to a gain of:

Gain =Expected variance

10

The desired deviations for U, 0, a, an q were 10 fps, 0.5 deg, 1 deg, and .2 deg/s,

respectively. These produced the gains shown in Figure 3.8.

The wind disturbance is implemented in much the same way as the

noise. White Noise for Continuous Systems is fed through a transfer function

and then into btm as the last input. As can be seen in Figure 3.9, the transfer

function is

0.0187
s+6.7

Like the sensor noises, the gain is dependent upon the sample rate which is

also 100 Hz for this model.

The third important part of the model is the actuator dynamics and

limitations, which are shown in Figure 3.11. This proved to be an important

Fge.1Sunad Actuad atore d alimitcadLi

1stabialor rate limit2

Inportl• lmt s+0dpalrt W upr

Demux flap/aileron ti/l aeMux

vane rate limit4
tpvans

bottom vane

Figure 3. 11. Simulink Actuator Dynamics and Limits
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part of the evaluation since a perfectly stable system would be destabilized by

the nonlinear rate and deflection limits. The dynamics of each effector were

obtained from [4:141] and can be seen in the above figure. The rate limits were

obtained from David Moorhouse [17] and are shown below in Table 3.3.

Table 3.3
Rate and Deflection Limits for Effectors

Effector Rate Limit Deflection Limit(from steady)

Canard 46 deg/s -21 + 29 deg
Stabilator 46 deg/s -33 +11 deg
Flap/Aileron 30 deg/s -35 +5 deg
Top Vanes 180 deg/s -17 +23 deg
Bottom Vanes 180 deg/s -17 +23 deg

The deflection limits are given as the deflection from steady state

position. These are based on the initial positions given in Table 3.2, although

there is one exception. The listed initial value for the flaps is 20 deg. It was

found that this setting had an adverse affect on the alpha response, since the

design method has no real way of weighting signs of outputs. Therefore, the

author made the adjustment of setting the flaps at 15 deg to see what could be

done. In reality, the pilot is just as likely to command a negative pitch rate

(this was the case in flight test data) as a positive since in landing the flight

path angle is usually negative. Considering this, the change did not adversely

affect the analysis.

Another change that was made, but in the actual program itself, has to

do with the vane deflections. In the original document that listed the

deflections for the effectors [4], the vane limits were given as +45 to +75

degrees. Over the course of developing the full order design it was found that

this hindered the response since the vanes only had seven degrees to come

back for positive pitch rate commands. When this was presented to David

Moorhouse [17], he stated that contractors had the same problem, and as a
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result the deflections on the vanes on the aircraft were adjusted to allow +35 to

+75. It was interesting to find that some of the things found by this research

were also found in the actual program development.

As shown in Figure 3.9, the deflections are split off and added to the

steady state values to produce the actual positions of the effectors. This was

then sent to the workspace as u. Therefore, the actuator deflection plots will

show the actual deflection as it would be on the aircraft.

This chapter has described the models used for both design and

evaluation. Before any type of mixed designs were found, the full, regulator,

tracking, and margin designs were analyzed. The results of this analysis are

found in the next chapter.
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Chapter 4. Preliminary Results

4.1 Full Model Design

The process of finding a full model controller that satisfied the ideal

model and also performed well in the face of wind disturbances, noises, and

actuator limits became quite a problem. Early models that had the altitude

state in the plant would not track since that put a column of zeros in the A

matrix of the model. Once that state was taken out, a response that followed

the ideal was found. The early models used educated guesses at what the

weightings on the noises and actuators should be. When the actuator limits

and noises were added to the evaluation model it was found that these initial

guesses were not very good. The nonlinear simulation responses were often

very unstable. Through many changes in the two weights, an acceptable

response was found. The final weightings were documented in Section 3.3.2.

As mentioned earlier, an 11th order controller was found using the

H2SYN.M Matlab routine.

4.1.1 Closed Loop Frequency Responses for Full Model Design

The first aspect of this synthesis to be analyzed is the set closed loop

frequency responses of the system. The two inputs to the system are the stick

and the throttle, which will be referred to as Qc (pitch rate command) and Uc

(velocity command) respectively. The frequency responses to the stick are

shown in Figure 4.1.
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Figure 4.1. Closed Loop Frequency Response to Stick

The dashed lines are the responses for the ideal models and the solid

lines are the actual. From this figure, one can conclude a few things about the

response of the system. The alpha and q responses are very close to the ideal

except for high frequencies. This is not bad since the weighting did not specify

close tracking of ideal for very high frequency. There is some deviation in the

alpha response between 1 and 10 rad/sec. This is the region of concern for the

pilots are concerned, but the deviation is quite small and should have little

effect on the performance. The velocity response is not bad. The ideal is that

this would be totally decoupled from the stick. The peak occurs in an

undesirable area but it only goes up to zero dB. This will be acceptable

considering that the velocity is represented in ft/sec and Qc is in deg/sec. The

worst case is that the velocity tracks Qc which will be on the order of three to
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five tosec, which is a very small deviation considering that the equilibrium

velocity is on the order of 200 ft/sec.

SV Plot Aikc
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The frequency responses to throttle input are shown in Figure 4.2.

Again, the ideal model is shown by the dashed line. The velocity response

follows the ideal very well up to about 10 rad/sec. The main use of the throttle

is for a speed hold, so there will not be high frequency throttle inputs and this

response would be expected to be acceptable. The other two responses are

fairly weli decoupled. Neither goes past -70 dB, which corresponds to a gain of

0.0003. Even though the velocity inputs are much larger in scale than the

others, this is quite acceptable.

These two figures show that the full order design should produce very

good responses that are close to ideal. This will be shown to be true in a later

section. Although these figures show the performance of the aircraft, they do
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not lend any insight into the potential noise and disturbance rejection

characteristics. This will be examined in the next section by looking at the

open loop.

4.1.2 Open Loop Analysis for Full Model Design

One of the goals of this design was to reject disturbances and noise.

Besides doing simulations in the time domain, one can examine the rejection

properties of the system by looking at the open loop transfer function. In

general, it has been found that the closed loop system will have good rejection

properties if the open loop has the proper bandwidth and performance

characteristics. Even though the system in this research uses a two degree of

freedom controller, the basic ideas stated above still hold. Figure 4.3 shows the

singular value plots for the open loop (GK1) and for the two controllers.

Open Loop SV Plot; GKI

510

0 - .................................... *........ .... . . . . ................ .......

10, 10", 10* 10
Frequency (rad/sec)

oSV Plot for K1

10 102 1* 102
Frequency (rad/sec)

Figure 4.3. Singular Value Plots for Open Loop Transfer Function

and Controllers K1 and K2
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The bandwidth of the open loop system can be seen on the plot to be around 8

rad/sec. This is fairly high, but is acceptable and should prove to produce good

noise rejection characteristics. For a single degree of freedom controller, the

low frequency gain would be expected to be high for good tracking. This is not

necessary for the two degree of freedom controller and is also evident in the plot

of GK1 [18]. One interesting aspect of this plot is that GK1 is a four by four

transfer function matrix, but only three singular values show up on the plot.

There is a fourth singular value, but it has very low gain at all frequencies. The

same thing can be said for K1, so one could conclude that the measurements

can be somehow reduced to three since the controller seems to only need that

many.

Another interesting aspect of these plots is that both the controllers

have very high bandwidths. In most cases this would be something to be

avoided, but for the two degree of freedom controller it can be acceptable.

From the frequency domain analysis in the previous two sections, it has

been concluded that the performance of the system will be good both with

respect to tracking and rejection. The next section will examine this

conclusion through time domain analysis.

4.1.3 Step Responses for Full Model Design

The step responses were found using the nonlinear Simulink evaluation

model discussed in Section 3.5. The step responses played a large part in the

design process. They helped determined whether or not a design was

satisfactory. The criteria for a satisfactory response were that it had to

match the ideal pitch rate response for a 1 deg/sec command closely and have

small steady state error. Also, for the 1 deg/sec command, the response had to

be well behaved with respect to wind and noise. These were somewhat
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subjective but were deemed to be acceptable. Another thing that had to be

kept in mind was that the pitch rate response was more important from a

handling qualities point of view. Comments from test pilots in the SMTD

program showed that pitch rate following was more important than a following

[17]. Therefore, if needed, the weighting on the pitch rate error would be

increased by some scalar multiple. Figures 4.4 and 4.5 show the responses to

a 1 deg/s pitch rate command without the disturbances. The dashed line in all
U Response
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Time (sec)
Alpha Response
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0 0.5 1 1!5 2 2e5 3 315 4 4!5 5
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Figure 4.4. Response to 1 deg/sec Pitch Rate Command

(no Disturbances)

the response figures represents the ideal response. As one can see, all three

quantities are very close to the ideal. As expected, there is some transient

deviation in the alpha response, but it tracks very well. The U response also

deviates but settles out fairly quickly. A change in velocity of less than one

ft/sec is almost unnoticeable to a pilot. It appears that the conclusions drawn
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from the frequency plots were correct and that this design does very well to

follow the ideal model.
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Figure 4.5. Actuator Deflections to 1 deg/sec Pitch Rate Command

The actuator deflections show a couple of interesting things. It appears

that the stabilator rate is initially very close to maximum. As mentioned in

Chapter 3, the flap is important for the angle of attack response, which is

responsible for the pitch rate commands to command flight path angle rate

indirectly since flight path rate is pitch rate minus angle of attack rate (angle

of attack rate is zero after about 1.5 seconds). It was found that when the

angle of attack match is taken out of the design model, the angle of attack

responds just like pitch angle, resulting in no change in flight path angle.

Another interesting thing is that the top and bottom vanes were not deflected

the same. This shows that the vanes helped produce some pitching moment

when the stabilator was at its maximum rate. The vanes also play a major
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role in holding the velocity. As pitch angle is increased, the thrust must also be

increased to sustain velocity and this is exactly what the vanes do.
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Figure 4.6. Responses to 1 deg/sec Pitch Rate Command
(with Wind Disturbance and Sensor Noise)

The next thing to examine is the effect of the wind disturbance and noise.

These are seen in Figures 4.6 and 4.7. As expected the response is degraded by

the disturbances. As one may expect, the alpha response is affected more in

the low frequencies (wind disturbance) and q shows the effects of sensor noise.

The response is far from clean but considering that the noise in the model is

very conservative (probably worse than what will actually be experienced), the

controller does quite well.

The actuator deflections (Figure 4.7) show the same general actuation

trends as the clean response. The maximum actuator deflections are larger

than the clean actuators but this is also to be expected since they must

counteract the disturbances and noises.
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Figure 4.7. Actuator Deflections to 1 deg/sec Pitch Rate Command

(with Wind Disturbance and Sensor Noise)

Another aspect of the design was the question: what was the pilot going

to ask the aircraft to do? This was a very important question since one would

like to use the full range of effector deflection without getting into trouble.

From flight test data showing stick and actuator deflections, a good idea of

what was needed from the aircraft was obtained. It was observed that the

maximum the pilot would command would be a 3 deg/s pitch rate held for

around 5 seconds. This was a fairly conservative guideline since the maximum

range of pitch angles was only 10 degrees. Applying this to older designs

showed they were using too much control power, which destabilized the

system. This was found to be the limiting factor as far as the actuator

weighting was concerned.
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4.1.4 Complementary Sensitivity and Margins

A very important aspect of control design is the stability robustness of

the system. The design methods mentioned in this research are based on

models that are linearized around a specific flight condition. Unfortunately, the

real world is not linear, and it is necessary that the control design stabilize the

system within a certain region around the specific flight condition. Calculating

the stability robustness for a single input single output (SISO) system is a

fairly simple operation involving Nyquist or Bode plots. Multiple input multiple

output (MIMO) systems are a bit more difficult to analyze. The biggest

difficulty is how to address simultaneous changes in the MIMO system. Vector

margins, which are based on the infinity norms of the sensitivity or

complementary sensitivity, are used to assess the stability robustness of the

designs in this work.

The complementary sensitivity singular value plot is shown in Figure

4.8.
50

.2

-50

-1001 , 10 10
10, 10 10 100 10

Frequency (rad/sec)
Figure 4.8. Complementary Sensitivity for Full Design
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The margins are based on the infinity norm of the complementary

sensitivity which can be seen in the following equations.
1

Lower Gain Margin = 1 -ao

Upper Gain Margin = 1 + a0

Phase Margin = ±2sin" (a-)
2

Looking at the complementary sensitivity plot, one would assume that this

design would have small margins. This is indeed the case as can be seen below.

Gain Margin=[-0.0458,.0455] dB

Phase Margin=± 0.3 degrees

Note that these tiny margins are caused by the complementary sensitivity

being large at low frequency; this is due to the rate tracking loop. It can easily

be concluded that this problem needs to address robustness, since these

margins are unacceptable for any type of application.

4.2 The H2 Regulator

As mentioned earlier, the heart of the mixed H2 / H. synthesis is the H2

problem. It has several important objectives in this research which are

reflected in its design (see Chapter 3). These relate to the main goal of this

work: to get a d- -educed order controller, and provide disturbance and

noise rejection chai acteristics. Based on these, the H2 problem had to provide

a simple (4th order) regulator with good disturbance and noise rejection. This

regulator was found by using H2SYN.M in Matlab.

4.2.1 Open Loop Analysis for Regulator

The open loop singular values are shown in Figure 4.9. The main points

that can be drawn from these are that the regulator has a lower bandwidth

than the full design; it can achieve what it needs to with only one signal; the
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stick and throttle inputs are not used at all. For this reason there is no

tracking analysis, as no information from the commands gets into the system.

02 Open Loop SV Plot; GK1
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SV Plot for K2

50

o .................................... I.
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Figure 4.9. Singular Value Plots for GK1, K1, and K2

Based on this, the closed loop system will not track but will reject disturbances

and noises and regulate the states.

4.2.2 Time Responses for Regulator

Since the closed loop tracking was not relevant to this problem, most of

the decisions as to what weights were to be used were based on initial condition

responses. These responses were produced by perturbing the initial state

vector in the aircraft state space. The two perturbed states are the alpha

state (5 deg) and the pitch rate (3 deg/sec). The response to an alpha

perturbation is shown in Figure 4.10.
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Figure 4.10. Response to 5 deg Alpha Perturbation

(no Disturbance or Noise)

The weights in the design model were chosen so that the pitch rate

response was fairly fast and had good damping (t=.7) with alpha and velocity

being regulated. Given the perturbation of 5 deg alpha, the plots show that this

is accomplished.

As mentioned earlier, one of the important aspects of the regulator

design is to produce good disturbance and noise rejection. The response and

actuator deflections with wind and noise are shown in Figure 4.11 and 4.12.
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Figure 4.11. Response to 5 deg Alpha Perturbation
(Wind Disturbance and Sensor Noise)

The velocity and alpha responses show practically no deviation from the

clean responses. The pitch rate is noisier but well regulated. The actuator

deflections also show some of the effects of the noise but are also quite small.

The interesting thing to note is how the deflections seem to have the same

shape curve. This makes sense, considering what was seen in the open loop

frequency plots.
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Figure 4.12 Actuator Deflections to 5 deg Alpha Perturbation
(Wind Disturbance and Sensor Noise)

The other perturbation that was investigated was an initial pitch rate

deviation. The desire here was to produce a response that was somewhat

similar to the ideal pitch rate response. An initial pitch rate of 3 deg/sec was

used to examine this. The result is shown in Figure 4.13.
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Figure 4.13. Response to 3 deg/sec Pitch Rate Perturbation
(no Disturbance or Noise)

The figure shows that the desired response is accomplished. The

velocity deviations are smaller than those in Figure 4.10. Obviously, velocity is

more sensitive to alpha changes than pitch rate changes. This would make

sense, considering that drag is dependent upon alpha.

The response to this perturbation with disturbances and noise was also

examined. These are seen in Figures 4.14 and 4.15.
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Figure 4.14. Response to 3 deg/sec Pitch Rate Perturbation
(Wind Disturbance and Noise)

Figure 4.14 shows that the rejection properties are very good. The pitch rate

response looks a lot better than the pitch rate response due to an alpha

perturbation, but this is mainly due to the scales of the plot. The actuators

also show the same trends that were seen in the alpha perturbation.
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Figure 4.15. Actuator Deflections to 3 deg/sec Pitch Rate Perturbations

(Wind Disturbance and Noise)

4.2.3 Complementary Sensitivity and Margins

Although the regulator was not meant to provide the system with good

margins, it is important to look at them to provide insight into the mixed

solution. The margin calculation is based on the complementary sensitivity

which can be seen in Figure 4.16.

71



-50

-100 2
16,10e 10"2 100 102

Frequency (radtec)
Figure 4.16. Complementary Sensitivity for Regulator

The margins for this are calculated the same way as for the full order

problem and are as follows:

Gain Margin= [-3.5,2.49] dB

Phase Margin= + 19. 1 degrees

These are much better than the full order design but are still a little small for

an aircraft application. Hopefully, the margins from this will be carried over to

the mixed problem, even though it is not one of the things the regulator is

trying to accomplish.

4.3 H- Tracking Design

In the mixed synthesis, the constraints are set up as singular H_

problems. It is important that the designer have some knowledge about what

they actually do. This gives the designer an idea of how much they are losing

by trading off between the H_ constraint and the H2 problem. Therefore, they

will first be examined as H_ optimization problems, rather than mixed
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constraints. As mentioned in Chapter 3, the H_ constraints need to be

augmented with extra inputs/outputs to make them nonsingular. A full order

synthesis was then performed. For the tracking constraint, control weighting

and weighted sensor noise inputs were added. Both weights were chosen small

so that they had little effect on the solution. The resulting full order controller

was 13th order with an optimal infinity norm of 1.0.

The purpose of this constraint was to provide the problem with model

following characteristics. The specifics on the design setup and weights to

accomplish this are detailed in Chapter 3.

4.3.1 Closed Loop Frequency Responses for Tracking Design

Considering the purpose of the constraint, this section will tell the most

about how well the mixed controller will do. The frequency responses for stick

input are shown in Figure 4.17.
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Figure 4.17. Closed Loop Frequency Response to Stick
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The ideal model is shown as the dashed lines. The models are followed

very closely by alpha and q. The velocity is also decoupled very well. The main

deviations occur in the q response below 0.001 rad/sec and in the alpha

response above 300 rad/sec. Both of these can be attributed to the fact that

the weighting is low in both of these areas (see Figure 3.7). It has already been

mentioned that the pitch rate is going to deviate at low frequencies regardless

of weighting. It was found that following the model down to 0.001 rad/sec

provided excellent tracking, so this is not a large concern. The deviation in the

alpha response is most likely due to a high frequency zero in that particular

transfer function. This also should not be a problem.

The frequency responses for the throttle command are shown in Figure

4.18. These responses do not appear to do as well as the stick responses. The
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Figure 4.18. Closed Loop Frequency Response to Throttle
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decoupling is not as good as the H2 full order case, but this is because different

weights were used. The poor decoupling occurs at low frequency where the

weighting is low. There is also a bit of deviation in the U response at low

frequency. In the future, this problem can be attacked through the use of

different weights in the necessary channels.

4.3.2 Open Loop Analysis for the Tracking Design

The tracking constraint was not meant to provide any type of rejection

properties, so it is expected that the open loop analysis would show deficiencies

in this area. The open loop plots are shown in Figure 4.19. One thing that

m Open Loop SV Plot; GK1
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Frequency (rad/sec)m SV Plot for K20 .................................. ........................................ . . . . . . . . . .

50,
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Figure 4.19. Singular Value Plots for GK1,Kl,and K2

is noticeable about these plots is the very high bandwidth of the controllers,

especially KF. This type of gain at high frequencies usually means poor noise

rejection. The open loop transfer function is somewhat deceiving. It would

appear that the bandwidth is less than 1 rad/sec which would normally mean
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good rejection properties. The thing to notice is that the transfer function does

not actually drop off until it reaches 1000 rad/sec, even though it goes below 0

dB much sooner. If a high frequency noise barrier, as used in LQG/LTR, were

to be put on the plot it would extend into that barrier. With these things in

mind, it is expected that the rejection properties of this controller will be poor.

4.3.3 Step Responses for the Tracking Design

The step responses were found using the same Simulink model as in

previous sections. The noiseless responses of the system are expected to quite

good based on the results in the closed loop analysis. Figure 4.20 shows that

U Response
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0 Response1.5, , , , , , , ,

0

0. 1!5 2L 2.5 3 A. 4 4!5 5
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Figure 4.20. Response to 1 deg/sec Pitch Rate Command

(no Disturbance or Noise)

this was indeed the case. The ideal models are followed very well. This is what

the tracking constraint was supposed to provide.

76



The actuator deflections are very similar to the H2 full order response

except that the vane provided more velocity control. This can be seen in Figure

4.21.
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1 2 3 4 4 2 3 4
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Figure 4.21. Actuator Deflections to 1 deg/sec Pitch Rate Command
(no Disturbance or Noise)

As mentioned earlier, this constraint was not meant for any type of

noise rejection. Figure 4.22 shows that the design does not provide any type of

noise rejection properties. The disturbance and noise make the performance

horrible. It does not track (recall that limiters are in place, so this is a

nonlinear simulation) and has large amounts of noise in the response. The

actuator deflections were found to be very noisy also.
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Figure 4.22. Response to 1 deg/sec Pitch Rate Command

(Wind Disturbance and Noise)

4.3.4 Complementary Sensitivity and Margins

Looking at Figure 4.23 and based on what was seen in 4.1.4, one would

expect these margins to be even worse, since the complementary sensitivity is

so large at low frequency. The results are below.

Gain Margin= [-0.00172,0.00172] dB

Phase Margin= + 0.011 degrees

These margins are very bad. Therefore, it is expected that the mixed design

will also have poor margins with good tracking performance.
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Figure 4.23. Complementary Sensitivity for Tracking Design

4.4 Stability Margin Design

As we have seen previously, the margins of this system have to be

addressed in some way. This would be accomplished in a mixed design by

including another constraint that minimizes the infinity norm of the

complementary sensitivity. The setup for this problem is discussed in Chapter

3. This section examines the complementary sensitivity problem by doing full

order H. synthesis. Like the tracking problem, the design model for this

problem is singular, but can be made regular by adding in small inputs and

outputs.
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4.4.1 Open Loop Analysis for the Margin Design

The open loop plots are shown below in Figure 4.24. The most notable
Open Loop SV Plot; GK1
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Figure 4.24. Singular Value Plots for GK1, K1, and K2

aspects of these plots are the very large bandwidths. Since noise rejection is

not addressed in the design, this is not very surprising. In all control designs, to

get one thing you usually have to give up another. It appears that this design

gives up noise rejection for increased margins.

4.4.2 Step Responses for the Margin Design

Even though this problem is not designed to give good tracking or

regulation, the results may be enlightening. The design was given a 1 deg alpha

perturbation (initial condition) to examine this aspect. The design does
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Figure 4.25. Response to 1 deg Alpha Perturbation
(no Disturbance or Noise)

regulate the system (although not well), but there are some interesting things

going on. One should notice that the alpha response initially increases before

being regulated. This is a result of the nonlinear actuator model that is used.

Figure 4.26 shows the actuator deflections. Initially, the actuators are at their

maximum rates. This is also not surprising since the actuator weighting on the

design model was very small. An analysis was done without the nonlinear

actuator dynamics, for which the regulation was better, but the initial actuator

deflections were in the hundreds, which is clearly unacceptable.
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Figure 4.26. Actuator Deflections to 1 deg Alpha Perturbation
(no Disturbance or Noise)

As mentioned earlier, this design is not expected to provide any type of

rejection properties. This is indeed the case and can be seen in Figures 4.27

and 4.28.
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Figure 4.27. Response to 1 deg Alpha Perturbation
(with Wind Disturbance and Noise)

The response becomes unstable and the actuators are at maximum rate all

the time. It was found that, with systems like this, the time step size of the

simulation makes a big difference in the results. Therefore, these noise

responses may not be totally accurate, but it is still obvious that the design

does not have good rejection properties. This should be corrected in the mixed

design.
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Figure 4.28. Actuator Deflection to 1 deg Alpha Perturbation
(with Wind Disturbance and Noise)

4.4.1 Comtplementary Sensitivity and Margins

Tids section is the most important aspect of this design since its sole

purpose is to improve the margins. The plot of complementary sensitivity is

seen in Figure 4.29.
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Figure 4.29. Complementary Sensitivity for Margin Design

By inspection, it can be seen that the margins are going to be much better

since the complementary sensitivity has been reduced. Like the open loop

plots, the frequencies of concern here are very high. This is consistent with

other problems. Usually, when one lowers a norm in one region, it increases in

some other. It appears that lowering the norm on the complementary

sensitivity has spread it out over a larger frequency range. The results of this

are improved margins, which are as follows:

Gain Margin=[-16.51,5.35] dB

Phase Margin= + 50.3 degrees

These margins are quite good and should help the mixed problem with its

margins.

Using the information found in the analysis of the previous designs, the

mixed solutions were found. The results of the mixed synthesis are documented

in the next chapter.
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Figure 5.1. Two-Norm vs. Infinity Norm; Tracking

The starting point of the curve (HM2 optimal) is a=0.193 and r=12.65.

The absolute lowest possible infinity-norm of the constraint, given the nature

of the pitch rate response and weighting, is 1. One can see that the plot does

resemble Figure 2.6, although there are some deviations. Considering that this

is a 60 parameter (number of elements of the controller) numerical search, this

type of numerical jumping is not surprising. The main thing is that the basic

curve shape can be obtained from the figure, which is shown by the dashed

curve in Figure 5.1. The final point of the plot, which is used as the reduced

order controller, has a=1.88 and y=1.20.

The program attempts to reduce the infinity-norm of the constraint.

Figure 5.2 shows the maximum singular value plots for the constraint at each

iteration.
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found that the tracking problem does indeed cause the output to follow the

model. Figure 5.3 shows the frequency response to stick command.
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Figure 5.3. Closed Loop Frequency Response to Stick

Considering that this controller is a reduction in order of 9 over the full order

controller, it does very well. The alpha response is very close to the ideal model

and velocity is decoupled very well. The weakest aspect of this seems to be the

pitch rate response. It is quite close to the ideal from 0.1 to 1 rad/sec, the

curve is just below 0 dB here and well below for frequencies less than 0.1

rad/sec. This means that the steady state error will be nonzero but small. The

deviations below 0.01 and above 30 rad/sec are due to the lack of weighting in

those areas (see Figure 3.7). In future work it may prove to be helpful to

extend the weighting down further in frequency to help improve the tracking

performance.

Figure 5.4 shows the closed loop frequency response to throttle inputs.
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Figure 5.4. Closed Loop Frequency Response to Throttle

Again, this controller does very well considering the large drop in order.

Actually, comparing this to Figure 4.18 shows that the decoupling of pitch rate

and alpha is better than achieved by the full order controller. The velocity

response is slightly worse than the full order but is still quite close. Comparing

this controller to the full order tracking controller shows that not a lot of

performance is lost when the order is reduced and rejection properties are

addressed.

5.1.2 Open Loop Analysis

As mentioned earlier, the purpose of the H, part of the problem is to

reduce the order and provide rejection properties. To get an idea of how well

this is done, the open loop singular value plots are examined. These can be

seen in Figure 5.5. The open loop bandwidth is around 10 rad/sec. This should
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Figure 5.5. Singular Value Plot for GK1, K1, and K2

produce adequate rejection. The bandwidths of the controllers are fairly high at

around 100 rad/sec, but this was also seen in Chapter 4. Comparing this figure

to Figure 4.9, one can see that the open loops are somewhat similar but the

mixed problem is using a lot more of the information. One can also see that K2

resembles the K2 produced by the full order tracking controller, but has a

much smaller bandwidth. There is truly a mixing of the characteristics of the

different problems.

From the previous two sections, it appears that the synthesis has

produced a direct reduced order controller that provides model following and has

good rejection properties. The next section will test these observations in the

time domain.
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5.1.3 Step Responses

The time responses were produced by a 1 deg/sec step pitch rate

command using the Simulink model discussed previously. The noiseless

responses are shown in Figure 5.6. The loss in performance is more easily seen
U Response

•0.05s

0O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Tome (sec)

Alpha Response0.41 1 _1--, 1... 1

0.2

Oi . 1!'5 2 2.5 3 3.5 4 4.5 5

lime (see)
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I fJI
0 .5 1 1! . 2 2!5 3' 3!.5 '4 4.5s
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Figure 5.6. Response to 1 deg/sec Pitch Rate Command
(no Disturbance or Noise)

here than in the frequency responses. The biggest loss is in the pitch rate

response, which is what was expected. Even though there is a loss in

performance, it is still quite good. The steady state error is only around 10%.

The deviations in performance in the alpha and velocity responses are totally

acceptable. The change in velocity is essentially unnoticeable, and the alpha

response deviation is less important, given feedback from test pilots.

The actuator deflections are shown in Figure 5.7. These deflections are
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Figure 5.7. Actuator Deflections to 1 deg/sec Pitch Rate Command

(no Disturbance or Noise)

very similar to the deflections shown in Figure 4.21. The main difference is

that the flap/aileron is used less and the stabilator is used more. There also

appears to be less pitching moment produced by the vanes.

The big question that remains is: does the controller have good rejection

properties? The answer to this is in Figure 5.8. This compares very well to the
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Figure 5.8. Response to 1 deg/sec Pitch Rate Command
(Wind Disturbance and Noise)

response of the full order H2 controller shown in Figure 4.6. This response

could be considered better in that the high frequency jitter in Figure 4.6 is not

present here. This helps make a case for separating the different constraints

into their specific tasks. This helps eliminate the conflicts and cross terms

that are present in an all-in-one design and appears to improve the design. The

reduced amount of noise can also be seen in the actuator deflections in Figure

5.9.
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Figure 5.9. Actuator Deflections to 1 deg/sec Pitch Rate Command

(with Wind Disturbance and Sensor Noise)

5.1.4 Complementary Sensitivity and Margins

The last aspect of this design to be examined is the margins. Figure 5.10

shows the complementary sensitivity. When looking back at the results in
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Figure 5.10. Complementary Sensitivity

Chapter 4, one can see that this is also a mixing of the characteristics of the

components. The most notable is that it appears that the infinity norm of the

complementary sensitivity is lowered and should therefore produce better

margins than just the tracking problem alone. The margins for various points

in the optimization are shown in Table 5.1.

Table 5.1
Mixed Mrgins4th order Trackin

Step # a Lower Gain Upper Gain Phase
Margin nMargin Margin

(dB) (dB) (deg)
1 0.193 12.65 -3.51 2.49 19.11
10 0.238 9.94 -3.49 2.48 19.04
20 0.418 7.71 -0.64 0.60 4.08
30 0.632 4.88 -1.05 0.94 6.56
100 1.078 2.75 -0.39 0.38 2.54
187 1.880 1.20 -0.15 0.15 0.98

In general it can be seen that as the solution approaches the optimal value of

the tracking constraint, the margins approach the tracking problem margins.

The final margins are better than those in the full order tracker, but they are

96



still very bad. It is interesting that the margins jumped up at an infinity-norm

of 4.88. Looking back at Figure 5.1, notice that this point is where the two-

norm jumps back down toward optimal, which could explain the increase.

These martins are clearly unacceptable for any type of real application.

The next section will look at the results of trying to increase the margins.

15.2 Results of 4th Order Mixed Controller with Margin Constraint, Case 1

As seen in Chapter 4, the margins of this problem can be increased with

a constraint on the complementary sensitivity. The mixed problem was run in

a similar manner to the mixed problem with tracking constraint, but there was

one major difference. Normally, the program is run from the optimal H,

solution, but in this case it had to be run from a controller produced in the

mixed problem with tracking constraint. The reason for this is that the

optimal H2 solution had an infinity norm of around 6000. The program would

not start from this point. Using a controller that was produced by the mixed

tracking problem, the initial infinity norm was around 600. The routine ran

very well after that until it got down to around 100. It was run down to around

89.3, which is close to the full order optimal of 82. The solution path is shown

in Figure 5.11.
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Figure 5.11. Two-Norm vs. Infinity-Norm; Margin Constraint

Initially, there is a large drop in two-norm down to the curve described in

Figure 2.6. It then ran smoothly until it got to around 100. Figure 5.12 shows

the maximum singular value plots for each iteration. This figure shows much
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Figure 5.12. Singular Value Plots at Each Step for Margins

of the same information as Figure 5. 11, but here one can see where the

maximum. errors are occurring. It was shown previously that the poor margins

were due to the high gains in complementary sensitivity at low frequency. This

figure shows that the synthesis for this design does the most work at low

frequency. Therefore, the margins should be much better.

The analysis of this design consists of looking at two of the solutions.

The first is the final solution which has a y of 89.3 and an a of 2.18. The

second, which is the next point along the boundary curve, is shown on Figure

5. 11 which has a y of 107 and an ax of 0.99.

5.2.1 Open Loop Analysis, Case 1

The constraint should help improve the margins of the system, but it

should not prevent the controller from having good regulator properties.

Therefore, the open loop plots should resemble those of the regulator. These

can be seen in Figure 5.13.
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Figure 5.13. Singular Value Plots for GK1, K1, and K2

These plots do resemble the regulator but use more information. This is

what was seen in the mixed tracking problem. The plot for K2 in the margin

design was zero (Figure 4.24). This would be the same here if run from H2
optimal, but since the initial controller was from the tracking problem, there

are non-zero singular values for K2 which the optimization ignores (this is a 1

DOF problem). Another interesting thing is that the very high bandwidths

from the constraint are not present, but their influence can be seen in the

relatively high bandwidths of the open loop systems.

From this, one could expect potentially degraded regulator properties

from this controller. This will be examined in the next section.

5.2.2 Time Responses, Case 1

As with the full order margin design analysis, the system was given a 1

deg alpha perturbation. The result of this can be seen in Figure 5.14. The
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Figure 5.14. Response to 1 deg Alpha Perturbation

(no Wind Disturbance or Noise)

figure shows that the controller does indeed regulate the outputs, but again not

well. The response resembles Figure 4.25 which is from the full order margin

design controller. This response, however, has a better initial response and less

deviation. This deviation is again produced by the nonlinear actuator

dynamics. This is shown better in Figure 5.15. As with Figure 4.26, the initial
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Figure 5.15. Actuator Deflections to 1 deg Alpha Perturbation

(no Wind Disturbance or Noise)

deflections are at the maximum rates. This causes the deviation. It would

appear that even though the frequency response analysis shows that the

controller is more like the regulator design, time responses show that it acts in

a similar manner to the full order margin design controller.

This was also evident when noises were introduced. Noises tended to

destabilize the system, but not as badly as what was seen in the full order

margin design. Like that simulation, time step size made a big difference in the

response of the system, so the accuracy of these responses are questionable.

For that reason, no plots of the response are included, and it is simply noted

that this design does not have good noise rejection properties. This is likely due

to the higher bandwidths produced by pushing down the complementary

sensitivity. It should also be noted that the final two-norm of the design was

around 10 times that of optimal. From this point of view, it makes sense that

102



the noise rejection would be bad. Looking at Figure 5.11, one could choose a

controller with a higher infinity-norm (potentially worse margins) but lower

two-norm (better noise rejection). This will be done is Section 5.3. The purpose

of showing this mixed design was to see how good the margins could be, which is

discussed in the next section.

5.2.3 Complementary Sensitivity and Margins, Case 1

The full order margin design showed that the margins .I be

substantially increased. This will show to be true for the mixed controller.
2C
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&0 10'a1•1" 0 0 0 0

3,-20-

Frequency (tad/see)

Figure 5.16. Complementary Sensitivity

Figure 5.16 shows that the margins are going to improved since the infinity-

norm of the complementary sensitivity is clearly reduced. These plots are both

similar to the plots for the regulator and the full order margin design but use

more information, which was seen previously. The actual margins produced

are shown in Table 5.2. The final margins are quite close to the full order
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Table 5.2
Mixed Margins; 4th order Margin

Step # a 1 Lower Gain Upper Gain Phase
Margin Margin Margin

I I _ I_ (dB) (dB) (de)
1 0.63 610.8 -1.06 0.94 6.56
12 0.20 500.8 -1.31 1.14 8.03
22 0.20 400.8 -1.67 1.40 10.04
32 0.23 300.8 -2.30 1.82 13.37
42 0.21 200.8 -3.72 2.60 20.07
55 3.36 100.7 -10.32 4.59 40.67
63 2.18 89.3 -13.31 5.03 46.14

margin design and are reasonably good. This table also points out the potential

for finding a controller with acceptable margins and good noise rejection

somewhere between y=200 and y=100. This is examined in the next section.

5.3 Results of 4th Order Mixed Controller with Margin Constraint, Case 2

The point chosen for this analysis is located at the point r=107.0, a=.99.

The purpose of looking at this point is to show that there can be a controller

with both good margins and regulator properties.

At this infinity-norm value the margins should be decent. The

complementary sensitivity is shown in Figure 5.17. There is a noticeable
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Figure 5.17. Complementary Sensitivity

difference between this plot and that shown in Figure 5.16. It is hard to see

from the figures, but the highest value of complementary sensitivity has

increased. Therefore, the margins should be lower. This was found to be true

and are shown below

Gain Margin=[-9.23,4.37] dB

Phase Margin= ± 38.18 degrees

The lowering of the margins was expected, but did the regulator

performance get better? The open loop plots are shown in Figure 5.18. The
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Figure 5.18. Singular Value Plots for GK1, K1, and K2

bandwidths of GK1 and K1 are smaller than those of Case 1. This should

provide better noise rejection which will be seen in the time responses. The

noiseless time responses in Figure 5.19 show that this controller is a much

better regulator than Case 1.
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The actuator deflections show that this controller does not have the

same problems that arose from nonlinearities as Case 1. This is obviously an

improvement over the Case 1.

The noiqe rejection properties can be seen in Figure 5.21. This is a vast
U Response
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Alpha Response

"0 1 2 3 4 5 6 7 8 9 10
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0 1 2 3 4 5 6 7 8 9 10
Time (so80

Figure 5.21. Response to 1 deg Alpha Perturbation
(with Wind Disturbance and Noise)

improvement over Case 1, which shows that a controller with good margins

and regulator properties can be found by choosing a controller that is not so far

up on the solution curve. If the designer is willing to give up more of the

margins, additional improvements in regulator performance can be attained.

5.4 Results of 3rd Order Mixed Controller with Tracking Constraint

One advantage of using this numerical approach is that any order

controller can be designed, so long as a stabilizing controller exists at the

chosen order. The order of the controller is determined by the order of the initial

guess. In the first case, the initial guess was the H 2 optimal controller, which

was of order four. Below fourth order, the theory cannot guarantee that the
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solution will have certain properties. Little has been done to examine this

problem, so a run of order three was conducted to see if any interesting results

could be obtained.

The initial guess was obtained from one of the fourth order controllers by

using SCHMR.M in Matlab. This produces a reduced order model of the given

controller. Care was taken to make sure that the controller was stabilizing.

The program was run in the same way as the 4th order mixed tracker and the

solution path is shown in Figure 5.22. Surprisingly, this ran very well all the
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Figure 5.22. Two-Norm vs Infinity-Norm; Tracking 3rd Order

way down to an infinity-norm of about 1.7. As can be seen in the figure, after

this point the numerics were not as stable. A solution was found with an

infinity-norm of 1.4, which was as low as the solution would go. This is the

point where the solution has the best performance. The only drawback was

that it had a two-norm of around 1.8. This was found to be poor for noise

rejection, so the solution was run further to attempt to reduce the two-norm.

This was accomplished, but at the cost of increasing the infinity-norm (reduced
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performance). The final solution used in this analysis has an infinity-norm of

1.74 and a two-norm of 1.49. It was found that the loss in performance was

small in comparison to the improvement in noise rejection.

The maximum singular value of the tracking constraint problem is

shown in Figure 5.23. This figure shows the same trends as Figure 5.22. One

can also see the waves that were present in the fourth order solution.

30-

25,

20,

-10%

-5,2

100Frequency (1012 th x ra )

Figure 5.23. Singular Value Plots at Each Step

for 3rd Order Tracking

From the infinity-norm of the solution, it is expected that the closed loop

performance will not be as good as the fourth order solution. This is examined

in the next section.

5.4.1 Closed Loop Frequency Response

The closed loop frequency response to stick commands is shown in

Figure 5.24. The alpha and velocity responses are still quite good, but it is
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obvious that there is loss of performance in the pitch rate response. There

should be a larger steady state error in the time response since the flat portion

of the response does not reach 0 dB. Similar trends are seen in Figure 5.25.
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Figure 5.24. Closed Loop Frequency Response to Stick

The alpha and pitch rate responses are about the same as the fourth order,

but the performance of the velocity response is slightly less than the fourth

order solution. As mentioned earlier, these losses in performance could be

reduced by picking a different controller, but it would be at the expense of noise

rejection.
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Figure 5.25. Closed Loop Frequency Response to Throttle

5.4.2 Open Loop Analysis

The open loop plots can be seen in Figure 5.26. Little difference can be

found when comparing these plots to the plots for the fourth order solution.

Since the fourth order solution had decent noise rejection properties, it is safe

to conclude that the third order solution will also have decent noise rejection

properties. As we will see in a later section, this is indeed the case.
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Figure 5.26. Singular Value Plots for GK1, K1, and K2

5.4.3 Step Responses

The step responses played an important role in the choice of the final

solution. Performance is often a driving force in the design of a controller, so

possibly the solution with the lowest infinity-norm would be the obvious choice.

In this case, this seemed to be the logical choice since the two-norm never got

above 1.83, which is still lower than the two-norm of the final fourth order

solution. However, this was found to be a poor choice through the use of the

step responses. Unsatisfactory noise rejection was produced by the lowest

infinity-norm solution. Therefore, a different solution with a y of 1.74 and an a

of 1.49 was used. This solution does have reduced performance, but it is only

5% below the smallest infinity-norm solution in terms of steady state

performance. Also, this transient response looks better. The responses and

actuator deflections are shown in Figures 5.27 and 5.28.
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(no Wind Disturbance or Noise)
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As was expected from the closed loop frequency analysis, the velocity

and alpha responses are still very good. The pitch rate response is not as good

as the fourth order solution but the degradation is fairly small. The steady

state error is around 20%. Depending on the importance of have a third order

controller, this could still be acceptable. The actuator deflections are almost

identical to the fourth order solution.
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Figure 2.29. Response to 1 deg/sec Pitch Rate Command

(with Wind Disturbance and Noise)

As mentioned earlier, the noise responses made a big difference in finding

a solution. The responses are shown in Figure 5.29. Comparing this figure to

Figure 5.8 shows that the third order noise rejection is just as good as that of

the fourth order. The performance of the third order minimum infinity-norm

solution did not reach the same level as the fourth order, so it was decided that

a bit of a loss in performance was well worth attaining the same noise rejection

properties. Figure 5.30 shows that the actuator deflections are also very

similar to the fourth order deflections.

115



-6

.8

10 40
-12(

-14 2 3 4 0 ; 3 4
Time (seC) Time (see)

Trailing Flap/Aileron Vanes topibot(-)

I

14 .. ..- 451

Time (sec) Time (sec)

Figure 5.30. Actuator Deflections to 1 deg/sec Pitch Rate Command
(with Wind Disturbance and Noise)

5.4.4 Complementary Sensitivity and Margins

Generally, when one reduces the order of a controller, there is a loss

somewhere. We have already seen that the performance has been lowered (to

achieve the same type of noise rejection). It is interesting to see what happens

to the margins.
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Figure 5.31. Complementary Sensitivity

The complementary sensitivity shown in Figure 5.26 is very similar to that of

the fourth order plots. Table 5.3 shows the margins at various points in the

solution. The points were chosen to have the same infinity-norm values as

shown in Table 5.1. A couple of general conclusions can be made from

comparing this table to Table 5.1. The first is that, for a given infinity-norm,

the two-norm of the third order solution will be higher than that of the fourth.

This conclusion is exactly what is expected by the theory for the lower order

Table 5.3
Mixed Madrgins; order Tracking

Sto # a Lower Gain Upper Gain Phase
Margin Margin Margin

(dB) (dB) (deg)

1 1.49 20.5 -1.32 1.15 8.13
17 0.25 12.5 -2.60 2.00 14.8
22 0.27 10.0 -2.59 2.00 14.8
26 0.34 8.0 -1.72 1.43 10.29
33 0.88 4.9 -0.21 0.20 1.37
38 1.46 2.77 -0.06 0.06 0.42
80 1.79 1.44 -0.08 0.08 0.53
101 1.49 1.74 -0.29 0.29 1.91
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solutions. The second is that the margins are indeed less than those of the

fourth order solution, which agrees with what common sense would say.

This chapter went through the results of the mixed synthesis. It was

found that the low order controllers can be found with the mixed method. The

next chapter discusses some conclusions based on the previous results and

also suggests some recommendations for further study.
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Chapter 6. Conclusions and Recommendations

6.1 Conclusions

The main conclusion that can be drawn from this research is that the

mixed H2 / H. theory and synthesis program are valid, and can be applied to a

complicated problem such as the SMTD. One can address a number of

different objectives using this method. Three of them were shown in this

research. The first is direct reduced order controllers. This work found fourth

and third order solutions to a problem that had full order solutions of 11th and

13th order (full order H2 and full order H_, respectively). The second is

performance. This problem had very specific response requirements relating

to ideal handling qualities. This was provided through a singular H. model

following constraint. Although there was some loss in performance compared

to the higher order solutions, the responses were quite good. The third thing is

stability robustness. The robustness was improved dramatically by using a

singular H. margin constraint on the complementary sensitivity.

Although the margins were improved by the margin constraint, there

are still some issues that need to be addressed. It was found that on all of the

designs that had good tracking performance, the margins were very bad. Even

though vector margins are conservative and robustness was not a specified

goal of those designs, the margins should have been better. When the one loop-

at-a-time margins were examined, they were much higher than the vector

margins. Looking at the results and the specifics of the problem, one can

conclude that this should be looked into further. Having both pitch rate and

theta in the feedback loop obviously caused some problems. It was found that

the frequency response for pitch rate command to pitch rate dropped off at low

frequency. This corresponds to a zero at the origin. This is difficult for the
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design to handle since one would need infinite control power to track pitch rate

at zero rad/sec. Additionally, it is natural that a pitch rate input to the

complementary sensitivity would cause a large theta output when that input

is at low frequency. This does not necessarily mean that the system is less

stable. Yet, the resulting large infinity-norm of the complementary sensitivity

produces very low vector margins. Therefore, it can be concluded that care

must be taken when looking at stability robustness if some quantity and its

rate are both used as feedback.

6.2 Recommendations

The problem has been mapped out with respect to a tracking constraint

and a margin constraint. The tracking problem was found to improve

performance but had horrible margins. The margin problem improved

robustness but had poor tracking. The next logical step is to combine these

two problems to produce solutions with both good performance and stability

robustness. There are two ways that this can be accomplished. The first is to

combine the two constraints into one single H_ constraint. The second is to

run the program with two singular H. constraints. The advantage of the

second over the first is that it avoids conflicts due to the cross coupling terms

that would arise from joining the two problems. This should produce a solution

that has good performance and good margins.

An advantage of the method is that the trade-offs between the two are

fairly easily controlled. This research has found where the two problems

provide good performance and good margins, so the target area for the multiple

constraint problem is fairly well defined, and it would be very interesting to see

the results of attempting to reach this area.
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Another interesting problem would be to find a mixed solution at full

order. This would show exactly how much is being lost by running at reduced

orders, or what exactly is possible from the design method. The only problem in

doing this is that the program takes a long time to run. It must search over

every element of the controller. In the fourth order examples, there were 60

elements of the controller to search over, and typical runs lasted up to 24

hours. Considering that the same problem with a tenth order controller would

have 210 elements, this will be a time consuming process, but still worth doing.

As mentioned in the conclusions, it was found that the margins of the

tracking systems were small but that there was some question as to whether

the systems were truly not robust. Further study of this is necessary in order

to answer these questions. Two possible ways to attack this are: one, to look

into alternative ways of assessing the robustness, and two, to make slight (but

valid) adjustments to the original system so that there is a zero close to the

origin but not at the origin.
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Apppdi A:Controller and Closed Loon Eigrenvalues

This appendix contains the controller and closed ioop eigenvalues of the
examples discussed in Chapter 4 and Chapter 5.

H9. FllD 'g

Controller Eigenvalues

real imaginary fr-equency damping

1.0670e-02 0.0000e+00 1 .0670e-02 -1 .0000e+00
1. 1091e-0 1 0.0000e+00 1.109 le-0 1 - 1.0000e+00

- 1.5000e-0 1 0.0000e+00 1 .5000e-0 1 1 .0000e+00
-6.5298e-0 1 -6.2858e-0 1 9 .0636e-0 1 7.2044e-0 1
-6.5298e-01I 6.2858e-0 1 9. 0636e-0 1 7.2044e-01
-3. 1399e+00 -1.8611le+00 3 .6500e+00 8.6024e-0 1
-3. 1399e+00 1.861 1e+00 3.6500e+00 8.6024e-0 1
-3.5000e+00 -3.5707e+00 5.0000e+00 7.OOOOe-01
-3.5000e+00 3.5707e+00 5.0000e+00 7.OOOOe-0 1
-6.6924e+00 0.0000e+00 6.6924e+00 1 .0000e+00
- 1.3965e+02 0.0000e+00 1.3965e+02 1.0000e+00

Closed Loop Eigenvalues

real imaginary frequency damping

-4.7375e-06 0.0000e+00 4.7375e-06 1.0000e+00
- 1.5000e-0 1 0.0000e+00 1.5000e-0 1 1.0000e+00
- 1.0088e-0 1 -2.0762e-0 1 2.3083e-0 1 4.3703e-0 1
- 1.0088e-01 2.0762e-0 1 2.3083e-0 1 4.3703e-0 1
-6.054le-01 0.0000e+00 6.0541e-0 1 1.0000e+00
-7.0 140e-0 1 -4.606 le-0 1 8.39 12e-0 1 8.3587e-01
-7.0140e-01 4.6061e-O1 8.3912e-01 8.3587e-01

-1.5 170e+00 0.0000e+00 1.5 170e+00 1.0000e+00
-2.3 145e+00 -1 .9315e+00 3.0 146e+00 7.6777e-01
-2.3 145e+00 1.93 15e+00 3.0 146e+00 7.6777e-0 1
-3.5000e+00 -3.5707e+00 5.0000e+00 7.OOOOe-01
-3.5000e+00 3.5707e+00 5.0000e+00 7.OOOOe-01
-5.0033e+00 0.0000e+e00 5.0033e+00 1.0000e+00
-6.6421le+00 0.0000e+00 6.6421le+00 1.0000e+00
-1.3468e+02 0.0000e+00 1 .3468e+02 1.0000e+00
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Regdator Designl

Controller Eigenvalues

real imaginary frequency damping

-2.0913e-01 0.0000e+00 2.0913e-01 1.0000e+00
-9.4252e-01 -6.9114e-01 1.1688e+00 8.0642e-01
-9.4252e-01 6.9114e-01 1.1688e+00 8.0642e-01

-6.1948e+00 0.0000e+00 6.1948e+00 1.0000e+00

Closed Loop Eigenvalues

real imaginary frequency damping

-2.1198e-01 0.0000e+00 2.1198e-01 1.0000e+00
-5.7209e-02 -2.4423e-0 1 2.5084e-01 2.2807e-01
-5.7209e-02 2.4423e-01 2.5084e-01 2.2807e-01
-5.3449e-01 0.0000e+00 5.3449e-01 1.0000e+00
-1.2872e+00 0.0000e+00 1.2872e+00 1.0000e+00
-2.7559e+00 0.0000e+00 2.7559e+00 1.0000e+00
-2.1260e+00 -2.0315e+00 2.9406e+00 7.2300e-01
-2.1260e+00 2.0315e+00 2.9406e+00 7.2300e-01

Trcking Design

Controller Eigenvalues

real imaginary frequency damping

-1.OOOe-02 O.O000e+00 1.OOOe-02 1.O000e+00
-1.OOOe-02 O.O000e+00 1.O00Oe-02 1.O000e+00
-7.9589e-02 O.O000e+00 7.9589e-02 1.O000e+00
-1.5000e-01 O.O000e+O0 1.5000e-01 1.O000e+O0
-4.1636e-01 O.O000e+00 4.1636e-01 1.O000e+O0
-3.5000e+00 -3.5707e+00 5.0000e+00 7.00OOe-01
-3.5000e+00 3.5707e+00 5.0000e+00 7.00OOe-01
-6.6840e+02 -6.5637e+02 9.3679e+02 7.1350e-01
-6.6840e+02 6.5637e+02 9.3679e+02 7.1350e-01
-1.0708e+03 -1.0365e+03 1.4903e+03 7.1853e-01
-1.0708e+03 1.0365e+03 1.4903e+03 7.1853e-01
-3.1453e+03 -3.1191e+03 4.4296e+03 7.1006e-01
-3.1453e+03 3.1191e+03 4.4296e+03 7.1006e-01

Closed Loop Eigenvalues

real imaginary frequency damping

-1.0296e-03 0.0000e+00 1.0296e-03 1.0000e+00
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i . .. i I _ II I[ I I I iII .

-1.00OOe-02 0.0000e+00 1.00OOe-02 1.0000e+00
-1.00OOe-02 0.0000e+00 1.0000e-02 1.0000e+00
-1.0000e-02 0.0000e+00 1.0000e-02 1.0000e+00
-1.5000e-01 0.0000e+00 1.5000e-01 1.0000e+00
-5.7209e-02 -2.4423e-01 2.5084e-01 2.2807e-01
-5.7209e-02 2 .4423e-01 2.5084e-01 2.2807e-01

-5.3449e-01 0.0000e+00 5.3449e-01 1.0000e+00
-1.2872e+00 0.0000e+00 1.2872e+00 1.0000e+00
-3.5000e+00 -3.5707e+00 5.0000e+00 7.00OOe-01
-3.5000e+00 3.5707e+00 5.0000e+00 7.00OOe-01
-6.6784e+02 -6.6780e+02 9.4444e+02 7.0713e-01
-6.6784e+02 6.6780e+02 9.4444e+02 7.0713e-01
-1.0710e+03 -1.0710e+03 1.5146e+03 7.071le-01
-1.0710e+03 1.0710e+03 1.5146e+03 7.071 le-01
-3.1454e+03 -3.1454e+03 4.4483e+03 7.071le-01
-3.1454e+03 3.1454e+03 4.4483e+03 7.071le-01

M arp-n DesiT

Controller Eigenvalues

real imaginary frequency damping

-6.8603e+06 0.O000e+00 6.8603e+06 1.O000e+00
-1.1552e+06 0.O000e+00 1.1552e+06 1.O000e+00
-2.4534e+05 0.O000e+00 2.4534e+05 1.O000e+00
-5.4545e+04 0.O000e+00 5.4545e+04 1.O000e+00
-1.O000e+04 0.O000e+00 1.O000e+04 1.O000e+00
-1.O000e+04 0.O000e+00 1.O000e+04 1.0000e+00
-1.O000e+04 0.O000e+00 1.O000e+04 1.O000e+00
-1.O000e+04 0.O000e+00 1.O000e+04 1.O000e+00

Closed Loop Eigenvalues

real imaginary frequency damping

-5.7209e-02 -2.4423e-01 2.5084e-01 2.2807e-01
-5.7209e-02 2.4423e-01 2.5084e-01 2.2807e-01

-1.O000e+00 0.O000e+00 1.0000e+00 1.O000e+00
-1.2872e+00 0.O000e+00 1.2872e+00 1.O000e+O0
-1.O000e+04 0.O000e+00 1.0000e+04 1.O000e+00
-1.0000e+04 0.O000e+00 1.0000e+04 1.0000e+00
-1.0000e+04 0.O000e+00 1.0000e+04 1.O000e+00
-1.O000e+04 0.O000e+00 1.0000e+04 1.O000e+00
-1.6357e+05 0.O000e+00 1.6357e+05 1.O000e+00
-7.4981e+05 0.O000e+00 7.4981e+05 1.O000e+00
-7.8455e+05 O.O000e+00 7.8455e+05 1.O000e+00
-6.6174e+06 0.O000e+00 6.6174e+06 1.O000e+00

124



Fourth Order Mixed Trackine Design

Controller Eigenvalues

real imaginary frequency damping

-3.0902e+00 0.0000e+00 3.0902e+00 1.0000e+00
-6.6292e+00 -5.1217e+00 8.3773e+00 7.9134e-01
-6.6292e+00 5.1217e+00 8.3773e+00 7.9134e-01
-1.5099e+01 0.0000e+00 1.5099e+01 1.0000e+00

Closed Loop Eigenvalues

real imaginary frequency damping

-1.2420e-02 0.0000e+00 1.2420e-02 1.0000e+00
-1.5828e-01 0.0000e+00 1.5828e-01 1.0000e+00
-8.4832e-01 0.0000e+00 8.4832e-01 1.0000e+00

-3.2055e+00 0.0000e+00 3.2055e+00 1.0000e+00
-2.4838e+00 -4.5461e+00 5.1804e+00 4.7945e-01
-2.4838e+00 4.5461e+00 5. 1804e+00 4.7945e-01
-1.1561e+01 -1.1089e+O1 1.6019e+01 7.2171e-01
-1.1561e+01 1. 1089e+O1 1.6019e+01 7.2171e-01

Fourth Order Mixed Margin Design. Case 1

Controller Eigenvalues

real imaginary frequency damping

-7.1243e-01 0.0000e+00 7.1243e-01 1.0000e+00
-7.9908e+00 0.0000e+00 7.9908e+00 1.0000e+00
-6.3679e+00 -6.3524e+00 8.9947e+00 7.0797e-01
-6.3679e+00 6.3524e+00 8.9947e+00 7.0797e-01

Closed Loop Eigenvalues

real imaginary frequency damping

-5.0123e-02 -2.4269e-01 2.478le-01 2.0226e-01
-5.0123e-02 2.4269e-01 2.478le-01 2.0226e-01
-7.4577e-01 0.0000e+00 7.4577e-01 1.0000e+00
-1.9172e+00 -1.3291e+00 2.3329e+00 8.2183e-01
-1.9172e+00 1.3291e+00 2.3329e+00 8.2183e-01
-2.4904e+00 0.0000e+00 2.4904e+00 1.0000e+00
-7.5677e+00 -1.0965e+01 1.3323e+01 5.6802e-01
-7.5677e+00 1.0965e+01 1.3323e+01 5.6802e-01
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Fourth Order Mixed MA_,'n Design, Case 2

Controller Eigenvalues

real imaginary frequency damping

-2.9600e-01 0.0000e+00 2.9600e-01 1.0000e+00
-1.9233e+00 -2.7513e+00 3.3569e+00 5.7294e-01
-1.9233e+00 2.7513e+00 3.3569e+00 5.7294e-01
-5.9641e+00 0.0000e+00 5.9641e+00 1.0000e+00

Closed Loop Eigenvalues

real imaginary frequency damping

-3.9961e-01 -3.4214e-01 5.2607e-0 1 7.5962e-01
-3.996le-01 3.4214e-01 5.2607e-01 7.5962e-01

-6.6756e-01 0.0000e+00 6.6756e-01 1.0000e+00
-1.4981e+00 0.0000e+00 1.4981e+00 1.0000e+00
-1.2086e+00 -9.8636e-01 1.5600e+00 7.7475e-01
-1.2086e+00 9.8636e-01 1.5600e+00 7.7475e-0 1
-2.7958e+00 -4.5544e+00 5.3440e+00 5.2317e-01
-2.7958e+00 4.5544e+00 5.3440e+00 5.2317e-01

Third Order Mixed Tracking Design

Controller Eigenvalues

real imaginary frequency damping

-2.9005e+00 0.0000e+00 2.9005e+00 1.0000e+00
-1.3119e+01 -1.7487e+00 1.3235e+01 9.9123e-01
-1.3119e+01 1.7487e+00 1.3235e+01 9.9123e-01

Closed Loop Eigenvalues

real imaginary frequency damping

-1.4756e-02 0.O000e+O0 1.4756e-02 1.O000e+O0
-1.6005e-01 0.O000e+00 1.6005e-01 1.0000e+00
-6.8798e-01 0.O000e+00 6.8798e-01 1.O000e+00
-3.VS86e+00 -1.8322e+00 3.7471e+00 8.7230e-01
-3.2686e+00 1.8322e+00 3.7471e+00 8.7230e-01
-1. 1302e+0 1 -1.0152e+01 1.5193e+01 7.4394e-01
-1.1302e+01 1.0152e+01 1.5193e+01 7.4394e-01
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Apuendix Be Computer Files Develoned

Over the course of this research, many programs were developed. This
appendix contains final versions of some of those programs.

The following two programs were used to set up the full design model.

ACDF2.M

% This file holds the aircraft data to be used in pff.m. Any

% changes in the design weightings are made here.

% by William C. Reigelsperger Jr.

% STOLMTD Landing Flight Condition 1

% This program used ideal model for alpha,q,U
% controller has 6 inputs(utheta,alpha,q,st,th)
% 5 outputs(cnrd,stb,flp,tvn,bvn)
% This program is used with pff.m to form packed sys matrix

clear cm dm dp cp

% Aircraft data for given flight condition

ap=[-.1729 -30.62 -12.49 0 0;
000 10;

-.00264 -.0583 -.3129 1 0;
.001067 0.7453 -.3813 0;
0 168.7 -168.7 0 0];

bp=[ .003912 -.08876 -.042 -.042 -.05352 -.09201 -.05352 -.09201;
00000000;
-.000837 -.001365 -.0002601 -.0002601 .0005339 -.0001733 .0005339

-.0001733;
.0117 -.02452 .0008338 .0008338 .007877 -.007061 .007877 -.007061;

00000000];

cp=[.0148 0 1.681 0 0;
.01538 0 2.067 -.1975 0;
10000;
0 57.3 0 0 0;
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0 057.3 00;
0 0 057.3 0;
0000 1J;

dp=(.004142 .00766 .001699 .001699 -.002154 .001743 -.002154 .001743;
.0102 -.00504 .002131 .00213 1 .00 1926 -.001915 .001926 -.001915;
zeros(5,8)];

% Sensed selective matrix ms (u,pitch att,alpha,q)

ms=[ 01000;00100;00010;00001];

% Remove any unwanted states or outputs for design model
% Remove h state and nz output,combine flap/aleiron and INAr yains

am=ap(1:4,1:4);
bm(:,1:2)=bp( 1:4, 1:2);bm(:,3)=bp( 1:4,3)+bp(1:4,4);bm(:,4)=bp( 1:4,5)+bp( 1:4,7);
bm(:,5)=bp(1:4,6)+bp( 1:4,8);
cm=cp(2:6, 1:4); cm=ms*cm;
dm(:, 1:2)=dp(2:6, 1:2);dm(:,3)=dp(2:6,3)-idp(2:6,4);dm(:,4)=dp(2:6,5)+dp(2:6,7);
dm(:,5)=dp(2:6,6)+dp(2:6,8);

% The desired response(see pg 29 thesis notebooki)

%idealdat
gam=.7;
w=5;
a=.15;

deni=conv([l gam*w*2 WA 2]J1 a]);
nll=(0 0 7.5 7.5*al;
ntmp=[0 7.5/WA2 1];
ntmp=w A2*ntmp;
n21=conv(ntmp,[1 a]);
n31=[ 0 000];
n12=[(0 000];
n22=(O0 0001;
n32=[0 a a*gam*W*2 a *WA2];

numi=[nl 1;n21;n31;n12;n22;n32];

(ati,bti,cti,dti]=tfin2ss(nuxm,deni,2,3);

[ai,bi,ci,clil=nunreal(ati~bti,cti~dti);

% Disturbance dynamics

dend-dl 6.7];
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numd=.0 187];

nsp=length(ap);

(ad~bd~cddd]=tfmn2ss(nunid,dend, 1,1);

% Actuator weighting

%wcnd=.032;wstb=.O 175;,wtef=. 1;wvrt=.0 175 ;wvrb=.0 175;
wcnd=.037;wstb=.02;wtef=.05;wvrt=.o2;wvrb=.o2;
%wend= 1.5;wstb=.7;wtef=l;wvrt=-.5;wvrb=.5;
wcnd=.04;wstb=.02;wtef=.05;wvrt-.o2;wvrb=.o2;

aa=O;ba=OI;ca=O;
da=(wcnd 0 0 00 ;0 wstb 0 00 ;O 0 wtef 0 0 ;0 0 0 wvrt 0 ;0 0 00 wvrbJ;

%da=ro*eye(5);

% Noise

%denn:=1l
%numn=[1;1;1; 1;1;1];

%[an,bn~cn,dn]=tfm2ss(numn,demi, 1,6);
bn=O;cn=O;an=IJ
dn=( 0 ;OO 0;sqrt(.O5) 0 0 ;o0sqrt(. 1) 0;0o00sqrt(.o2) 1;
dn=dn,

% Weighting on ideal minus actual signal

ntmp=[1 5];dtmp=[1.0005];

wq=10;
walpha=5;
wwu-. 1;
z=10 0];

numl=(walpha*ntmp;z;z;z;wq*ntmp;z ;z~z;wwu*ntmp];
denI=dtmp;

[at,bt,ct,dt]=tfin2sa(numl,denl,3,3);
%(aI,bI,cI,dI]=minreal(at,bt~ct,dt);
aI=at;bI=bt;cI=ct;dI=dt;

% Disturbance matrix gamn

gam--am(: ,3);
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% Actual selective matrix ml (alpha~qu)

ml=(00 10; 0001; 1000];

% Sensed selective matrix ms (u,pitch att~alpha~q)

mas=( 01000;00100;O0010;OOO01];

% This program forms the packed P matrix using data f-rom acdi2.m

% for full design.

% by William C. Reigeisperger Jr.

nsp=length(am);

% Get the lengths of each state space, and other important lengths

nsi=length(ai)ii=length(di(l,:));oi=length(di(:, 1));
nsd=length(ad);id=length(dd(l,:));od=length(dd(:,1));
nsI=length(aI);iI=length(dI(1,:));oI=length(dI(:, 1));

ip=length(dm(l,:));op=length(dm(:,l));
ia--length(da(1,:));oa=length(da(:, 1));
in=length(dn(l,:));on=length(dn(:,1));

% Now form AB1,B2,C1C2,DI11,D 12,D2 1,D22

A=(am zeros(nsp~nsi) gam*cd zeros(nsp,nsl);
zeros(nsi,nsp) ai zeros(nsi,nsd+nsl);
zeros(nsd,nsp+nsi) ad zeros(nsd~nsl);
-bI*mI*cm bI*ci zeros(nsl,nsd) all1;

Bl=( zeros(nep~ii) gamr*dd zeros(nsp,in);
bi zeros(nsi~id+in);
zeros(nsdAn) bd zeros(nsd~in);

bI*di zeros(nsl~id+in)];

B2=(bm;zeros(nsi,ip);zeros(nsd,ip);-bI*mI*dm];

B=[B1 B2];

C1=[-dI*ml*cm dI*ci zeros(ol~nsd) cl;
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zeros(oansp+nsi+nsd+nsl) 1;

C2=(cm zeros(on,nsi+nsd+nsI);
zeros(iinsp+nsi+nsd+nsl) ];

C=[CI;C2];

D 11=[dI*di zeros(oIid+in);
zeros(oaAi+id+in)J;

D12=[-dI*mI*dm;
da];

D21=[zeros(on,ii+id) dn;
eye(ii) zeros(iiid+in)];

D22=[dm;zeros(ii,ip)];

D=[DI1 D12;
D21 D22];

sys=pck(A,BC,D);

length(A)

The following two programs were used to set up the regulator
design model that was examined in Chapter 4 and in the mixed desigrL

ACD H2.M

% This file holds the aircraft data to be used to set up problem. Any
% changes in the design weightings are made here.

* by William C. Reigelsperger Jr.

% STOIMTD Landing Flight Condition 1

% This program used ideal model for alpha,oU
% controller has 6 inputs(utheta,alpha,q,stth)
% 5 outputs(cnrdstb,flp,tvnbvn)
% This program is used with pfh2.m to form packed sys matrix
*

clear cm dm dp cp
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% Aircraft data for given flight condition

ap=[-.1729 -30.62 -12.49 0 0;
000 10;

-.00264 -.0583 -.3129 10;
.001067 0.7453 -.3813 0;
0 168.7 -168.7 0 0];

bp=[ .003912 -.08876 -.042 -.042 -.05352 -.09201 -.05352 -.09201;
00000000;
-.000837 -.001365 -.0002601 -.0002601 .0005339 -.0001733 .0005339

-.0001733;
.0117 -.02452.0008338 .0008338.007877 -.007061 .007877 -.007061;

00000000];

cp=[.0148 0 1.681 00;
.01538 0 2.067 -.1975 0;
10000;
0 57.3 00 0;
0 0 57.3 0 0;
0 0 0 57.3 0;
0 0 0 0 11;

dp=[.004142 .00766.001699.001699 -.002154 .001743 -.002154 .001743;
.0102 -.005C4.002131 .002131 .001926 -.001915 .001926 -.001915;
zeros(5,8)];

% Sensed selective matrix ms (u,pitch att,alpha,q)

ma=[ 01000;00100;00010;00001];

% Remove any unwanted states or outputs for design model
% Remove h state and nz output,combine flap/aleiron and lft/rt vains

am=ap(l:4,1:4);

bm(:,1:2)=bp(1:4,1:2);bm(:,3)=bp(1:4,3)+bp(1:4,4);bm(:,4)=bp(1:4,5)+bp(1:4,7);
bm(:,5)=bp(1:4,6)+bp(1:4,8);
cmfcp(2:6,1:4); cm=ms*cm;
dm(:, 1:2)=dp(2:6,1:2);dm(:,3)=dp(2:6,3)+dp(2:6,4);dm(:,4)=dp(2:6,5)+dp(2:6,7);
dm(:,5)=dp(2:6,6)+dp(2:6,8);
dm=ms*dm;

% Disturbance dynamics

dend=(1 6.7];
numd=[.01871;
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nap=Iength(ap);
%(ad,bd,cd,dd]=tfin2ss(numd~dend, 1,1);
ad--tjbd=O;cd=O;dd=.0187/6.7;

% Actuator weighting

wcad=.0 1;wstb=.0 1;wtef=.05;wvrt=-.02;wvrb=wvrt;
%wcnd=.037;wstb=.02;wtef=.05;wvrt=-.02;wvrb=.02;
%wcnd=1.5;wstb=.7;wtef= 1;wvrt=-.5;wvrb=.5;
%wcnd=.04;wstb=.02;wtef=.05;wvrt=.02;wvrb=.02;

aa=O;ba=O;ca=O;
da=[wcnd 0 00 0 ;0 wstb 0 00 ;0 0 wtef 0 0 ;0 0 0 wvrt 0 ;0 0 00 wvrb];
ro=-5

% Noise

bn=O;cn=O;an=fl;
dn=[ 10 00 ;O0sqrt(.05) 0 0 ;00sqrt(.1)0 ;O0 00sqrt(.02)]1;
dn=dn;

% Disturbance matrix gamn

gam--am(:,3);

% Actual selective matrix mI (alpha,%u)

ml=(00 10; 000 1; 100 0];

% Sensed selective matrix ms (upitch att~alpba,q)

ms=([ 01000;00100;00010;00001];

% State weight h.
wuu=lIwth=1;wal=1;,wqq=-1;

h=.18*ro*(wuu 0 0 0;0 wth 0 0;0 0 wal 0;0 0 0 wqq];
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% This program forms the packed P matrix using data from acdfli2.m

% for the h2/lqg part of the mixed problem

nsp=length(am);

% Get the lengths of each state space, and other important lengths

nsi=length(ai);ii=length(di(1,:));oi=length(di(:, 1));
nsd=length(ad);id=length(dd(l,:));od=length(dd(:,1));
nsl=length(aI);iI=length(dI( 1,:));oI=length(dI(:, 1));

ip=length(dm(l1:));op=Iength(dm(:,1));
ia=length(da( 1,:));oa=length(da(:, 1));
in=length(dn(l,:));on=length(dn(:,1));

% Now form AB1,B2,C1,C2,D1I,D12,D21,D22

A2-4am]1;

Bw=( zeros(nspid +in+ii)];

Bu=[bm];

B=[Bw Bu];

Cz=jh ;zeros(5,nsp)];

Cy=(cm
zeros~iinsp) 1;

C=(Cz;Cy];

Dzw--zeros(nsp+ip,id+op+ii);

Dzu=-[zeros(nsp~ip);
da]);

Dyw=[zeros(on~id) dn zeros(onfii);
zeros(fiiid+on) eye(2)];
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Dyu=[zeroes(on+ii,ip)];

D=[Dzw Dzu
Dyw Dyul;

sys=pck(A2,B,C,D);

The tracking design was set up by the following two programs.

AC.DFH.M

" This file holds the aircraft data to be used in seting up problem.
" Any changes in the design weightings are made here.

% by William C. Reigelsperger Jr.

% STOIIM Landing Flight Condition 1
*

% This program used ideal model for alpha,q,U
% controller has 6 inputs(u,theta,alpha,q,st,th)
% 5 outputs(cnrd,stb,flp,tvnbvn)
% This program is used with pfhi2.m to form packed sys matrix
*

clear cm dm dp cp

% Aircraft data for given flight condition

ap=[-. 1729 -30.62 -12.49 0 0;
000 10;

-.00264-.0583 -.3129 10;
.001067 0.7453 -.3813 0;
0 168.7 -168.7 00];

bp=[ .003912 -.08876 -.042 -.042 -.05352 -.09201 -.05352 -.09201;
00000000;
-.000837 -.001365 -.0002601 -.0002601 .0005339 -.0001733 .0005339

-.0001733;
.0117 -.02452.0008338 .0008338.007877 -.007061.007877 -.007061;

00000000];

cp=[.0148 0 1.681 00;
.01538 0 2.067 -.1975 0;
10000;
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0 57.3 0 00;
0 0 57.3 00;
0 0 057.3 0;
0000 1];

dp=[.004142 .00766 .001699 .001699 -.002154 .001743 -.002154 .001743;
.0102 -.00504 .002131 .002131 .001926 -.001915 .001926 -.001915;
zeros(5,8)];

% Sensed selective matrix ma (u~pitch att,alpha,q)

ms=[ 01000;00100;00010;00001];

% Remove any unwanted states or outputs for design model
% Remove h state and nz output,combine flap/aleiron. and lftfrt yains

am=ap(1:4,1 :4);
bm(:, 1:2)=bp( 1:4,1 :2);bm(:,3)=bp( 1:4,3)+bp( 1:4,4);bm( :,4)=bp( 1:4,5)+bp( 1:4,7);
bm(:,5)=bp( 1:4,6)+bp( 1:4,8);
cm=cp(2:6,1:4); cm=ms*cm;
dm(:, 1:2)=dp(2:6, 1:2);dm(: ,3)=dp(2:6,3)+dp(2:6,4);dm(:,4)=dp(2:6,5)+dp(2:6,7);
dm(:,5)=dp(2:6,6)+dp(2:6,8);
dmn~is*cdxf;

% The desired response(see pg 29 thesis notebooki1)

%idealdat
gam=-.7;
w--5;
a=.15;

deni=conv([1 gam*w*2 WA2],[1 a]);
nll=[0 0 7.5 7.5*a];
ntmp=[0 7.5/wA2 1];
ntmp=w A2*ntmp;
n2 1=conv(ntmp,[1 a]);
n3l=[(00 0 0];
n124(0 00 0];
n22=[0 0 0 0];
n32=[ 0 00 a];
n32=[0 a a*gam*w*2 a*WA2];

numi=[nl 1;n21;n31;n12;n22;n32];

[ati,bti,cti,dti]=tfin2ss(numi,deni,2,3);

[ai~bi,ci,di]-minreal(ati,bti,cti,dti);

% Disturbance dynamics
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dend=(1 6.7];
numd=(.O 187];

nsp=length(ap);
(ad~bd,cd,dd]=tfin2ss(numd,dend, 1,1);

% Actuator weighting

%wcnd=.032;wstb=.O 175;wtef=. 1;wvrt=.0 175;wvrb=.0 175;
wend=.037;wstb=.02;wtef=.05;wvrt=.02;wvrb=.02;
%wcnd=1 .5;wstb=.7;wtef=1;wvrt=-.5;wvrb=.5;
wcnd=.04;wstb=.O2;wtef=.05;wvrt--.O2;wvrb=.02;

aa=O~ba=O;ca=O;
da=[wcnd0000;O wstbO0O0O ;O 0wtefO0O ;OO0 0wvrtO0 ;OO00O0wvrb];

%da=ro*eye(5);

da= 1e-5*eye(5);

% Noise

%denn=l;
%numn=(1 ;1; 1; 1;1; 1];

%[an,bncn,dn]=tfm2ss(numn~denn, 1,6);
bn=Ol;cn=O;an=[];
dn=-[ 1000;Osqrt(.05)00;O0sqrt(.1)O;Ooosqrt(.02)J;
dn=dr4

% Weighting on ideal minus actual signal

ntmp=100*[ 1 le-2]; dtmp=conv([1 .1],[1 10]);

wq7=1;
walpha=-1;
wwu--d;
Z=1 0 0];

nuiml=[walpha*ntmp;z;z;z;wq*ntmp;z ;z;z;wwu*ntmpj;
denf=dtmp;

(at,bt,ct,dt]=tfm-2ss(numl~denI,3,3);
%[aI,bI,cI,dI]=minreal(at,btcet,dt);
aI=at;bl=bt;cI=ct;dI=dt;
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% Disturbance matrix gain

gam=am(:,3);

% Actual selective matrix ml (alpha,q~u)

m.T=(0O10; 0001; 1000];

% Sensed selective matrix ins (u,pitch attalpha,q)

mns=[ 01000;00100;00010;00001];

% This program forms the packed P matrix using data from acdfhi2.in

% for the tracking contraint in the mixed problem

nsp=length(am);

% Get the lengths of each state space, and other important lengths

nsi=length(ai);ii=length(di(1,:)),oi=length(di(:, 1));
nsd=length(ad)-id=length(dd( 1,:));od=length(dd(:, 1));
nsl=length(aI);iI=length(dI(1,:));oI=length(dI(:, 1));

ip=length(dm( 1,:));op=length(dm(:, 1));
ia--length(da(1,:));oa--length(da(:, 1));
in=length(dn(1,:));on=length(dn(:, 1));

% Now form AB1,B2,C1,C2,D1 1,D12,D21,D22

A=[am. zeroe(nsp,nsi+nsl);
zeros(nsi,nsp) ai zeros(nsi~nsl);
-bI*mI*cm bI~ci al 1;

B1=( zeros(4,2);bi;zeros(nsl,2)];

B2=fbm;zeros(nsi+nsl,5)];

B=[B1 B2];
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Cl=[-dl*ml*cm dl*ci cl ];

C2=[cm zeros(onnsi+nsl);
zeros(ii,nsp+nsi+nsl) 1;

C=(C1;C2];

D 11=zeros(3,2);

D 12=[zeros(3,5)];

D21=Czeros(onii);
eye(ii) ];

D22=[dm;zeros(ii,ip)];

Df[D11 D12;
D21 D22];

sys=pck(A,B,C,D);

The margin design was set up by the following programs.

"% This file holds the aircraft data to be used in problem. Any

"* changes in the design weightings are made here.

% by William C. Reigelsperger Jr.

% STOIJMTD Landing Flight Condition 1

"* This program used ideal model for alpha,q,U
"* controller has 6 inputa(u,theta,alpha,q,st,th)
% 5 outputs(cnrd,stb,flptvnbvn)
"* This program is used with pflhim.m to form packed sys matrix
*

clear cm dm dp cp

% Aircraft data for given flight condition

ap=[-. 1729 -30.62 -12.49 0 0;
000 10;
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-.00264 -.0583-.3129 10;
.001067 0.7453 -.3813 0;
0 168.7 -168.7 0 0];

bp=[ .003912 -.08876 -.042 -.042 -.05352 -.09201 -.05352 -.0920 1;
00000000;
-.000837 -.001365 -.0002601 -.0002601 .0005339 -.0001733 .0005339

-.0001733;
.0117 -.02452 .0008338 .0008338 .007877 -.007061 .007877 -.007061;

00000000];

cp=[.0148 0 1.681 0 0;
.01538 0 2.067 -.1975 0;
10000;
0 57.3 0 0 0;
0 0 57.3 0 0;
0 0 0 57.3 0;
0no0 1];

dp=[.004142 .00766.001699.001699 -.002154.001743 -.002154 .001743;
.0102 -.00504 .002131 .002131 .001926 -.001915 .001926 -.001915;
zeros(5,8)];

% Sensed selective matrix ms (u,pitch att,alpha,q)

ms=[ 01000;00100;00010;00001];

% Remove any unwanted states or outputs for design model
% Remove h state and nz output,combine flap/aleiron and lft/rt vains

am=ap(1:4,1:4);
bm(:,1:2)=bp(1:4,1:2);bm(:,3)=bp(1:4,3)+bp(1:4,4);bm(:,4)=bp(1:4,5)+bp(1:4,7);
bm(:,5)=bp(1:4,6)+bp(1:4,8);
cm=cp(2:6,1:4); cm=ms*cm;dm(:,1:2)fdp(2:6,1:2);dm(:,3)=dp(2:6,3)+dp(S.6,4);dm(:,4)=dp(2:6,5)+dp(2:6,7);

dm(:,5)=-dp(2:6,6)+dp(2:6,8);
din=ms*din;

% Disturbance dynamics

dend=[1 6.71;
numd=[.0187];

nsp=length(ap);
[adbd,cd,dd]=tfm2ss(numd,dend, 1,1);
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% Actuator weighting

%wcnd=.032;wstb=.0 175;wtef=. 1;wvrt=.0 175;wvrb=.O 175;
wcnd=.037;wstb=.02;wtef=.05;wvrt=.02;wvrb= .02;
%wcnd=1.5;wstb=. 7;wtef=1 ;wvrt=-.5;wvrb=.5;
wcnd=.04;wstb=.02;wtef=.05;wvrt=-.02;wvrb=.02;

aa=fl;ba=O;ca=Ol;
da=(wcnd 0 0 00 ;0 wstb 0 00 ;0 0 wtef 0 0 ;0 0 0 wvrt 0 ;0 0 00 wvrb];
ro=- 1;
da~ro*da;
%da=ro*eye(5);

% Noise

%denn=-1;
%nurnn=[1;1; 1; 1;1; 1];

%[an~bn,cn,dn]=tfm2ss(nuxnn,denn, 1,6);
bn=O;cn=O;an=[];
dn=( 10 00 ;O0sqrt(.05) 0;o0sqrt(. 1) 0;00o0sqrt(.02) 1;
dn=dn,

* Disturbance matrix gamn

gam,=am(:,3);

% Actual selective matrix ml (alpha,%u)

mI=C00 10; 000 1; 1000];

% Sensed selective matrix ms (u,pitch att,alpha,q)

ms=[ 01000;00100;O0010;00001];

% set up output weighting on el

ntmp=70*[1 100];dtmp=[1 10000];
numl=(ntmp;z;z;z; z;ntmp;z;z; z;z;ntmp;z; z;z;z;ntmp];
den 1=dtmnp;
[a 1,bl,c 1,d 1]=tfm2ss(numl,denl,4,4);

% set up input weighting on d2

a2=0;b2=0;c2=0;d2=eye(4);
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% This program forms the packed P matrix using data from acdlhixnmm
% for the margin constraint of the mixed problem

nsp=length(am);

% Get the lengths of each state space, and other important lengths

nsi=length(ai)iiu=length(di(l,:));oi=length(di(:, 1));
nsd=Iength(ad)id=length(dd(1,:));od=length(dd(:,I));
nsI=length(aI);iI=length(dI(l,:));oI=length(dI(:, 1));
DR 1=length(al)-i1=length(dl(l1:));o 1=length(dl(:, 1));
ns2=length(a2);i2=length(d2(1,:));o2=length(d2(:, 1));

ip=length(dm(l,:));op=length(dm(:, 1));
ia=length(da( 1,:));oa=length(da(:, 1));
in--length(dn(1,:));on=length(dn(:, 1));

% Now form AB1,B2,C1,C2,D1 1,D12,D21,D22

A=[am zeros(nsp,nsl+ns2);
bl*cm al zeros(nsl~ns2);
zeros(ns2,nsp-insl) a2]1;

Bl=[ zeros(nsp-,nsl,i2);b2];

B2=Cbm;zeros(ns 1+ns2,5)];

B=[B1 B21;

C1=[dl*cm zeros(ol,nsl+ns2)]1;

C2=(cm zeros(i2,nsl) c2;
zeros(2,nsp+nsl+ns2)]1;

C=(C 1;C2];

Dl 1=zeros(ol,i2);

D 12=(zeros(o 1,5)];

D21=[ A2

zeros(iijin)];
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D22=[zeros(ii+i2,ip)];

Df[DU D12;
D21 D22];

sys=pck(AB,CD);

After a controller was found, the following program set up the plant and
controller to be used in the evaluation model.

1MS E2 M

% This program sets up the controller state space and the
% aircraft evaluation state space.

atm=ap;ctm=cp;

dtm(:, 1:2)=dp(:,1:2);dtm(:,3)=dp(:,3)+dp(:,4);dtm(:,4)fdp(:,5)+dp(:,7);
dtm(:,5)=dp(:,6)+dp(:,8);

dtm(:,6)=zeros(7,1);

btm(:, 1:2)=bp(:,1:2);btm(:,3)=bp(:,3)+bp(:,4);btm(:,4)=bp(:,5)+bp(:,7);
btm(:,5)=bp(:,6)+bp(:,8);

btm(:,6)=ap(:,3);

The following programs made the response and actuator plots once the
Simulink model was run.

RESP.M

% This program takes the data sent to the workspace by
% the evaluation model and plots out the ideal and
% actual velocity, angle of attack, and pitch rate
% responses.

subplot(3,1,1),plot(t,y(:,3),tyi(:,3),'--')
xlabel(Time (secY),ylabel('Ft/s),title('U Response')

subplot(3,1,2),plot(t,y(:,5),t,yi(:,l),'--')
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ziabeiC"rime (secY),ylabel('Degrees'),title('Mlpha Response')

subplot(3,1,3),plot(ty(:,6),t~yi(:,2),'--')
xlabeiCTime (sec)'),ylabel('Degrees/sec'),titieC'Q Response')

ACT2M

"% This program plots the actuator deflections produced by
"% the evaluation model.

subplot(2,2, 1),plot(t~u(:, 1))
xlabel('Time (sec)'),yabel(Degrees')
title('Canard')

xlabel(Time (secY),ylabel(Degrees')
titlefStabilator')

subplot(2,2,3),plot(t,u(:,3))
xlabel(MTme (sec)'),ylIAbel('Degrees')
title(Trailing Flap/Aileron-)

subplot(2,2,4),plot(t,u(:,4),t,u(:,5),'--')
xdabel('Time (sec)'),ylAbel(CDegrees')
title(Tanes top/bot(-Y)

The closed loop system was found using the following program.

% This program uses the data produced by ACDF*.M with the
% controller to calculate the closed loop state space.

a=am;

bl=zeros(4,2);
b2=bm;

cl=cm;
c2=[cm;zeros(2,4)J;

dll=zeros(5,2);
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d12=-dm;

d2 l=(zeros(4,2);eye(2)];
d22=(dm;zeros(2,5)J;

s--inv(eye(5)-dk1'd22);

acl=[a+b2*s*dk*c2 b2*s*ck;bk*c2+bk*d22*s*dk*c2 ak+bk*d22*s8*ck];

bcl=(bl+b2*,s*dk*d21;bk*d2 1+bk*d22*s*dk*d21J;

ccl=Ccl+d12*s*dk*c2 d12*s*ck];

dcl=(dl 1+dl2*s*dk*d2 1];

The open loop state spaces and complementary sensitivity state space
were set up using the following program.

MARGIM

% This program finds KI, K2, open loop GKI, and T state space

% form the plant

msel=[zeros(4,2) eye(4) zeros(4,,1)];
cpy=msel*cp;dpy=msel*dp;
%ms=eye(4);

% Break up the controller into kl,k2

clear aki ,clear bkl ,clear ckl ,clear dkl ,clear ak2 ,clear bk2,
clear ck2 ,clear dk2 ,clear tmp

akl=ak;ak2=ak;
nsk=length(ak);

bk2(1:nsk, 1:2)=bk( 1:nsk,5:6);
tmp(l:nsk, 1:4)=bk( 1:nsk, 1:4);
bkl=tmp;

ck2(:, 1:nsk)=ck( 1:5, 1:nsk);
ckl(:,l:nsk)=ck( 1:5,1:nsk);

dk2(:, 1:2)=dk( 1:5,5:6);
dkl(:,1:4)=dk( 1:5,1:4);
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dkludkl,

%Now form Lo = GKI

(alo,blo,clo,dlo]=series(akl,bkl,ckl,dkl~am,bm,cm,dm);

(at,bt,ct,dt]=cloop(alo,blo,clo~dlo, 1);

The mixed H2 / H-. routine used a large number of programs that were
developed by David Walker and Brett Ridgely. The following lists those that
were developed for this particular problem.

The mixed tracking problems were set up by the following program.

% This program sets up h2/bi tracking problem.

globa lA2Ai Bd BwBu2Bui Ce CzCy2CyiDed Deu DzuDyd Dyw
global ns2 nsi ndd nww nuu nee nzz nyy ncc

disp('forming H-infinity problem')
acdflui2
pflui2;
disp('forming H2 problem')
acdfh2
pfh2;

A2=A2; Ai=A;

Bd=BI; Bw=Bw; Bu2=Bu; Bui=B2;

Ce=-C1; Cz=Cz; Cy2=Cy; Cyi=C2;

Deu=D12; Dzu=Dzu; Dyd=D21; Dyw=Dyw; Dyu=Dyu; Ded=D11;

[ns2,ns]=size(A2);
(nsi~ns]=size(Ai);
[nd,ndd]=size(Bd);
[nw~nww]=size(Bw);
nuu--length(Bu( 1,:)),
nee=length(Ce(:, 1));
nzz=length(Cz(:,l));
nyy--length(Cyi(:, 1));
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Dzw--zeros(nzz,nww); Dyu2=Dyu; Dyui=Dyu;

The mixed margin problem was set up by the following program.

*EM,

% This program sets up h2/hi margin problem.

global A2 Ai BdBwBu2Bui Ce CzCy2CyiDed Deu DzuDyd Dyw
global ns2 nsi ndd nww nuu, nee nzz nyy ncc

disp('forining H-infinity problem')
acdfliim
pfluim;
disp('forming H2 problem')
acdfh2
pfh2;

A2=A2; Ai=A;

Bd=BI; Bw=Bw; Bu2=Bu; Bui=B2;

Ce=C1; Cz=Cz; Cy2=Cy; Cyi=C2;

Deu=D12; Dzu=Dzu; Dyd=D21; Dyw=Dyw; Dyu=Dyu; Ded=D11;

(ns2,ns]=size(A2);
[nsi~ns]=size(Ai);
[nd~ndd]=-size(Bd);
[nw,nww]=size(Bw);
nuu:=length(Bu(1,:))
nee=length(Ce(:, 1));
nzz=length(Cz(:,l));
nyy--length(Cyi(:, 1));

Dzw=zeros(nzz,nww); Dyu2=Dyu; Dyui=Dyu;

The actual program was run by two different programs. One starts the
run and the other restarts. A specific starting program was used for each case
but could be restarted by the same program. The following are used to start
the runs.
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% This script is the driver for the H /H optimization

% ~2 inE

% routine. It sets up the problem then iterates over

% The routine is entered with agamma and aclose X

% for the problem. This is for the third order tracking problem.

global lambda gradtype iterd ncc
iterd=1O%iterd-inputC'Number of DFP iterations:');
gradtype= 1;
format long e
lambda=1%lambda=inputC'Enter lambda:'
setm3;
load third,
ncc=3;
[AcBc,CcDc]=unpck(k);
X=setupx(Ac,Bc,Cc);

[Tzw Ted]=fun2(X)
gaml=Ted
gam=gaml;
[n,nn]=size(X);
normvec=[Tzw Ted Ted 0 0];
xvec=[Xl;
del--input('Enter the absolute step size for gamma: '
steps=inputC'Enter the number of steps desired: '
for ii=1:steps
gam--gam-del
[Xfiterfrr=dfp('2inf,X,gam);
[Tzw,Ted]=fun2(Xf)
normvec=[normvec;Tzw Ted gam. iter err];
xvec=[xvecXf];

save out3rd norinvec xvec,
plot(normvec(:,2),normvec(:,l));grid;
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% This script is the driver for the H /H optimization

% ~2 inE

% routine. It sets up the problem then iterates over

% The routine is entered with agamma and aclose X

% for the problem. This is for the fourth order tracking problem.

global lambda gradtype iterd
iterd=1Oiterd-inputCWumber of DFP iterations:');
gradtype=l;
format long e
lambda=1%lambda--inputCEnter lambda:')
setzn3;
(k,g]=h2syn(sys,6,5);
[Ac,Bc,Cc:,Dd]=unpc~k(k);
X=setuPx(Ac,Bc,Cc);

(Trzw TedJ=fun2(X)
gaml=Ted
gam--gaml;
[n~nn]=-size(X);
normvec--{Tzw Ted Ted 0 0];
xvec=-[Xl;
del-inputC7,nter the absolute step size for gamma: '
steps=input(Snter the number of steps desired:'
for ii=l:steps
gam=gani-del
[Xfiter,err]=dfp,(`h2inf`,X,gam);
[Tzw,Ted]=fun2(Xf)
normvec=[normvec;Tzw Ted gain iter err];
xvec=(CxvecPtl;

save outm,3 norinvec xvec;
plot(normvec(:,2),normvec(:, 1));grid;

end
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% This script is the driver for the H 1H optimization

% 2inf

% routine. It sets up the problem then iterates over

% The routine is entered with a gamma and a close X

% for the problem. This is for the fourth order margin problem.

global lambda gradtype iterd
iterd=10%iterdfinput('Number of DFP iterations:');
gradtype= 1;
format long e
lambda=1%lambda=input('Enter lambda: )
setm5;
load fourth; Acf-ak;Bcf-bk;Cc=ck;
X=setupx(Ac,Bc,Cc);

[Tzw Ted]=fin2(X)
gaml=Ted
gam=gaml;
[nnn]=size(X);
normvec=[Tzw Ted Ted 0 0];
xvec=[X];
del=input(TEnter the absolute step size for gamma: ')
steps=input('Enter the number of steps desired: ')
for ii=l:steps
gam=gam-del
[Xfiter,err]=dfp(•h2inf Agam);
(Tzw,Ted]=fun2(Xb)
normvecf-[normvec;Tzw Ted gam iter err];
xvec=(xvecX1l;
X=-Xf;

save outm5 normvec xvec;
plot(normvec(:,2),normvec(:, 1));grid;

end

The two programs used to restart the runs are as follows. One is for fourth
order and the other is for third.
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% This script is the driver for the H /H1 optimization

% 2 inf

% routine. It sets up the problem then iterates over

% The routine is entered with a gamma and a close X

% for the problem. Restarts fourth order runs.

global lambda gradtype iterd ncc
iterd--inputC'Number of DFP iterations:');
gradtype= 1;
format long e
lambda=inputC7Enter lambda:');
setup=inputC'Name of Setup File: ',Vs);
eval(setup);
datainput=inputC(rmm what datafile is the original normplot drawn? ',Vs);
rerun---rrrl;
outvec=[rerun datainputi;
eval([load 'datainput])
size(normvec)
disp('Beyond which point are we going?.)
pointl=inputC')
X=xvec(point 1,:);

ncc=length(A2)%input('input order of controller','s')
[Trzw Ted]=fun2(X)
gaml =Ted
gam=gaml;
[n~nn]=size(X;
normvec=[Tzw Ted Ted 0 0];
xvec=[X'J;
del=input('Enter the absolute step size for gamma: '
steps=input('Enter the number of steps desired:)
for ii=1:steps
gain=gam-del
(Xf,iter,err]=df~p(Mif`X~gam,);
[Tzw,Ted]=fun2(Xf
normvec=(normv~ec;Tzw Ted gam, iter err];
xvec=[xvecýfl;
X--Xf;

eval(('save 'outvec,' normvec xvecl);
%save outm I normvec xvec;
plot(normvec(:,2),normvec(:, 1));grid;
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*** * ***** * ******* ******** *

% This script is the driver for the H /H optimization
% ~2 mEf

% routine. It sets up the problem then iterates over

% The routine is entered with a gamma and a dlose XL

% for the problem. This restarted a third order run.

global lambda gradtype iterd, ncc
iterd--inputC(Wuber of DFP iterations:');
gradtype= 1;
format long e
lambda=inputC'Enter lambda: ');
setup=input( Name of Setup File: ',Vs);
eval(setup);
datainput--inputC7rom what datafile is the original normplot drawn? ',sV);
rerun=Crrrl;
outvec=(rerun datainput];
eval([load ,datainput])
size(normvec)
disp(Beyond which point are we going?')
pointl=input(")
X=xvec(pointl,:);

ncc=3%input('input order of controller',Ws)
[Tzw Ted]=fun2(X)
gaml=Ted
gam=gam 1;
[n,nn]=size(X);
normvec=[Tzw Ted Ted 0 0];
xvec=(Xl;
del--mput('Enter the absolute step size for gamma: '
steps--inputC'Enter the number of steps desired: '
for ii=l:steps
gam=gam-del
I.Xfjiter,err]=dlfp(MhWnX,gam);
(Tzw,Ted]=fun2(Xf)
norm~vec=(normvec;Tzw Ted gain iter err];
xvec=([xvecýfl;

eval([Usave ',outvec,' normvec xveci]);
%save outmi normvec xvec;
plot(normvec(:,2),normvec(:,1));grid;

end
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Once a solution was found, the controller was extracted from the
solution vector with the following function.

aGr M

function [acbc,cc,dd]=getk(xncc)

% This function produces the controller state space from the mixed
% solution vector

%global A2 Ai Bu2 Bui Cy2 Cyi Bd Dyd Bw Dyw Ce Deu Cz Dzu Ded
%global ncc ndd nee nuu nyy

nc=ncc;
nyyff6;nuu=5;

for i= 1:nc
forj=l:nc

ac(ij) = x((i-1)*nc+j);
end
for j=l:nyy
bc(ij) = x(nc*nc+(i-1)*nyy+j);

end
forj=l:nuu

cc(j,i) = x((nc+nyy)*nc+(i-1)*nuu+j);
end

end
dd=zeros(nuu,nyy);

The margins found in Chapter 4 and Chapter 5 were found by the
following function which used information from MARG2.M.

function [gm2,pm2]=igm(a,b,c,d,mI)
l=length(d);

"% This function calculates the vector margins given the
"* complementary senstivity state space

w=logspace(-4,3,700);
% calculate infnorm of T

eig(a)
[svw]=sigma(a,b,c,d);

a0=1/max(max(sv))
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gl=1-aO;g2= 1+a0;
gm24-20*Ioglo(gi) 20*IogIO(g2)];
pm2=2*asin(aO/2yP 180*7/22;
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